Advertisement

Performance Analysis of WMNs by WMN-PSODGA Simulation System Considering Exponential and Chi-Square Client Distributions

  • Admir Barolli
  • Shinji SakamotoEmail author
  • Leonard Barolli
  • Makoto Takizawa
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 29)

Abstract

The Wireless Mesh Networks (WMNs) are becoming an important networking infrastructure because they have many advantages such as low cost and increased high speed wireless Internet connectivity. In our previous work, we implemented a Particle Swarm Optimization (PSO) based simulation system, called WMN-PSO, and a simulation system based on Genetic Algorithm (GA), called WMN-GA, for solving node placement problem in WMNs. Then, we implemented a hybrid simulation system based on PSO and distributed GA (DGA), called WMN-PSODGA. In this paper, we analyze the performance of WMNs using WMN-PSODGA simulation system considering Exponential and Chi-square client distributions. Simulation results show that a good performance is achieved for Chi-square distribution compared with the case of Exponential distribution.

References

  1. 1.
    Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)CrossRefGoogle Scholar
  2. 2.
    Barolli, A., Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L., Takizawa, M.: Performance evaluation of WMNs by WMN-PSOSA simulation system considering constriction and linearly decreasing Vmax methods. In: International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 111–121. Springer, Cham (2017)Google Scholar
  3. 3.
    Barolli, A., Sakamoto, S., Barolli, L., Takizawa, M.: Performance analysis of simulation system based on particle swarm optimization and distributed genetic algorithm for WMNs considering different distributions of mesh clients. In: International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 32–45. Springer, Cham (2018)CrossRefGoogle Scholar
  4. 4.
    Barolli, A., Sakamoto, S., Ozera, K., Barolli, L., Kulla, E., Takizawa, M.: Design and implementation of a hybrid intelligent system based on particle swarm optimization and distributed genetic algorithm. In: International Conference on Emerging Internetworking, Data & Web Technologies, pp. 79–93. Springer, Cham (2018)CrossRefGoogle Scholar
  5. 5.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  6. 6.
    Franklin, A.A., Murthy, C.S.R.: Node placement algorithm for deployment of two-tier wireless mesh networks. In: Proceedings of Global Telecommunications Conference, pp. 4823–4827 (2007)Google Scholar
  7. 7.
    Girgis, M.R., Mahmoud, T.M., Abdullatif, B.A., Rabie, A.M.: Solving the wireless mesh network design problem using genetic algorithm and simulated annealing optimization methods. Int. J. Comput. Appl. 96(11), 1–10 (2014)Google Scholar
  8. 8.
    Goto, K., Sasaki, Y., Hara, T., Nishio, S.: Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks. Mob. Inf. Syst. 9(4), 295–314 (2013)Google Scholar
  9. 9.
    Inaba, T., Elmazi, D., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A secure-aware call admission control scheme for wireless cellular networks using fuzzy logic and its performance evaluation. J. Mob. Multimed. 11(3&4), 213–222 (2015)Google Scholar
  10. 10.
    Inaba, T., Obukata, R., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of a QoS-aware fuzzy-based CAC for LAN access. Int. J. Space-Based Situated Comput. 6(4), 228–238 (2016)CrossRefGoogle Scholar
  11. 11.
    Inaba, T., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A Testbedfor admission control in WLAN: a fuzzy approach and its performance evaluation. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 559–571. Springer, Cham (2016)Google Scholar
  12. 12.
    Lim, A., Rodrigues, B., Wang, F., Xu, Z.: k-center problems with minimum coverage. In: Computing and Combinatorics, pp. 349–359 (2004)Google Scholar
  13. 13.
    Maolin, T., et al.: Gateways placement in backbone wireless mesh networks. Int. J. Commun. Netw. Syst. Sci. 2(1), 44 (2009)Google Scholar
  14. 14.
    Matsuo, K., Sakamoto, S., Oda, T., Barolli, A., Ikeda, M., Barolli, L.: Performance analysis of WMNs by WMN-GA simulation system for two WMN architectures and different TCP congestion-avoidance algorithms and client distributions. Int. J. Commun. Netw. Distrib. Syst. 20(3), 335–351 (2018)CrossRefGoogle Scholar
  15. 15.
    Muthaiah, S.N., Rosenberg, C.P.: Single gateway placement in wireless mesh networks. In: Proceedings of 8th International IEEE Symposium on Computer Networks, pp. 4754–4759 (2008)Google Scholar
  16. 16.
    Naka, S., Genji, T., Yura, T., Fukuyama, Y.: A hybrid particle swarm optimization for distribution state estimation. IEEE Trans. Power Syst. 18(1), 60–68 (2003)CrossRefGoogle Scholar
  17. 17.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  18. 18.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A comparison study of simulated annealing and genetic algorithm for node placement problem in wireless mesh networks. J. Mob. Multimed. 9(1–2), 101–110 (2013)Google Scholar
  19. 19.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A comparison study of hill climbing, simulated annealing and genetic algorithm for node placement problem in WMNs. J. High Speed Netw. 20(1), 55–66 (2014)Google Scholar
  20. 20.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A simulation system for WMN based on SA: performance evaluation for different instances and starting temperature values. Int. J. Space-Based Situated Comput. 4(3–4), 209–216 (2014)CrossRefGoogle Scholar
  21. 21.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Performance evaluation considering iterations per phase and SA temperature in WMN-SA system. Mob. Inf. Syst. 10(3), 321–330 (2014)Google Scholar
  22. 22.
    Sakamoto, S., Lala, A., Oda, T., Kolici, V., Barolli, L., Xhafa, F.: Application of WMN-SA simulation system for node placement in wireless mesh networks: a case study for a realistic scenario. Int. J. Mob. Comput. Multimed. Commun. (IJMCMC) 6(2), 13–21 (2014)CrossRefGoogle Scholar
  23. 23.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: An integrated simulation system considering WMN-PSO simulation system and network simulator 3. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 187–198. Springer, Cham (2016)Google Scholar
  24. 24.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks. Int. J. Commun. Netw. Distrib. Syst. 17(1), 1–13 (2016)CrossRefGoogle Scholar
  25. 25.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation of a new replacement method in WMN-PSO simulation system and its performance evaluation. In: The 30th IEEE International Conference on Advanced Information Networking and Applications (AINA-2016), pp. 206–211 (2016).  https://doi.org/10.1109/AINA.2016.42
  26. 26.
    Sakamoto, S., Obukata, R., Oda, T., Barolli, L., Ikeda, M., Barolli, A.: Performance analysis of two wireless mesh network architectures by WMN-SA and WMN-TS simulation systems. J. High Speed Netw. 23(4), 311–322 (2017)CrossRefGoogle Scholar
  27. 27.
    Sakamoto, S., Ozera, K., Barolli, A., Ikeda, M., Barolli, L., Takizawa, M.: Implementation of an intelligent hybrid simulation systems for WMNs based on particle swarm optimization and simulated annealing: performance evaluation for different replacement methods. In: Soft Computing, pp. 1–7 (2017)Google Scholar
  28. 28.
    Sakamoto, S., Ozera, K., Barolli, A., Ikeda, M., Barolli, L., Takizawa, M.: Performance evaluation of WMNs by WMN-PSOSA simulation system considering random inertia weight method and linearly decreasing vmax method. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 114–124. Springer, Cham (2017)Google Scholar
  29. 29.
    Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Implementation of intelligent hybrid systems for node placement problem in WMNs considering particle swarm optimization, hill climbing and simulated annealing. Mob. Netw. Appl. 1–7 (2017)Google Scholar
  30. 30.
    Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Performance evaluation of WMNs by WMN-PSOSA simulation system considering constriction and linearly decreasing inertia weight methods. In: International Conference on Network-Based Information Systems, pp. 3–13. Springer, Cham (2017)Google Scholar
  31. 31.
    Sakamoto, S., Ozera, K., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of intelligent hybrid systems for node placement in wireless mesh networks: a comparison study of WMN-PSOHC and WMN-PSOSA. In: International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 16–26. Springer, Cham (2017)Google Scholar
  32. 32.
    Sakamoto, S., Ozera, K., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of WMN-PSOHC and WMN-PSO simulation systems for node placement in wireless mesh networks: a comparison study. International Conference on Emerging Internetworking. Data & Web Technologies, pp. 64–74. Springer, Cham (2017)Google Scholar
  33. 33.
    Sakamoto, S., Ozera, K., Barolli, A., Barolli, L., Kolici, V., Takizawa, M.: Performance evaluation of WMN-PSOSA considering four different replacement methods. International Conference on Emerging Internetworking. Data & Web Technologies, pp. 51–64. Springer, Cham (2018)Google Scholar
  34. 34.
    Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. J. Glob. Optim. 31(1), 93–108 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Shi, Y.: Particle swarm optimization. IEEE Connect. 2(1), 8–13 (2004)Google Scholar
  36. 36.
    Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Evolutionary programming VII, pp. 591–600 (1998)Google Scholar
  37. 37.
    Vanhatupa, T., Hannikainen, M., Hamalainen, T.: Genetic algorithm to optimize node placement and configuration for WLAN planning. In: Proceedings of The 4th IEEE International Symposium on Wireless Communication Systems, pp. 612–616 (2007)Google Scholar
  38. 38.
    Wang, J., Xie, B., Cai, K., Agrawal, D.P.: Efficient mesh router placement in wireless mesh networks. In: Proceedings of IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS-2007), pp. 1–9 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Admir Barolli
    • 1
  • Shinji Sakamoto
    • 2
    Email author
  • Leonard Barolli
    • 3
  • Makoto Takizawa
    • 4
  1. 1.Department of Information TechnologyAleksander Moisiu University of DurresDurresAlbania
  2. 2.Department of Computer and Information ScienceSeikei UniversityMusashino-shiJapan
  3. 3.Department of Information and Communication EngineeringFukuoka Institute of TechnologyHigashi-KuJapan
  4. 4.Department of Advanced Sciences, Faculty of Science and EngineeringHosei UniversityKoganei-ShiJapan

Personalised recommendations