Advertisement

Group Speed Parameter Effect for Clustering of Vehicles in VANETs: A Fuzzy-Based Approach

  • Kosuke OzeraEmail author
  • Kevin Bylykbashi
  • Yi Liu
  • Makoto Ikeda
  • Leonard Barolli
  • Makoto Takizawa
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 29)

Abstract

In recent years, inter-vehicle communication has attracted attention because it can be applicable not only to alternative networks but also to various communication systems. In this paper, we present the group speed effect in clustering of vehicles in VANETs. We conclude that by selecting vehicles with high SC, high VC and low DCC the possibility that the vehicle will remain in the cluster increases. But in the case of group speed, the GS value should be medium in order that vechile remains in the cluster.

Keywords

VANET Fuzzy Cluster 

References

  1. 1.
    Delay- and disruption-tolerant networks (DTNs) tutorial. NASA/JPL’s Interplanetary Internet (IPN) Project (2012). http://www.warthman.com/images/DTN_Tutorial_v2.0.pdf
  2. 2.
    Araniti, G., Campolo, C., Condoluci, M., Iera, A., Molinaro, A.: Lte for vehicular networking: a survey. IEEE Commun. Mag. 21(5), 148–157 (2013)CrossRefGoogle Scholar
  3. 3.
    Booysen, M.J., Zeadally, S., van Rooyen, G.J.: Performance comparison of media access control protocols for vehicular ad hoc networks. IET Netw. 1(1), 10–19 (2012)CrossRefGoogle Scholar
  4. 4.
    Burleigh, S., Hooke, A., Torgerson, L., Fall, K., Cerf, V., Durst, B., Scott, K., Weiss, H.: Delay-tolerant networking: an approach to interplanetary internet. IEEE Commun. Mag. 41(6), 128–136 (2003)CrossRefGoogle Scholar
  5. 5.
    Calhan, A.: A fuzzy logic based clustering strategy for improving vehicular ad-hoc network performance. Sadhana 40(2), 351–367 (2015)CrossRefGoogle Scholar
  6. 6.
    Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., Weiss, H.: Delay-tolerant networking architecture. IETF RFC 4838 (Informational), April 2007Google Scholar
  7. 7.
    Cheng, X., Yao, Q., Wen, M., Wang, C.X., Song, L.Y., Jiao, B.L.: Wideband channel modeling and intercarrier interference cancellation for vehicle-to-vehicle communication systems. IEEE J. Sel. Areas Commun. 31(9), 434–448 (2013)CrossRefGoogle Scholar
  8. 8.
    Cooper, C., Franklin, D., Ros, M., Safaei, F., Abolhasan, M.: A comparative survey of vanet clustering techniques. IEEE Commun. Surv. Tutorials 19(1), 657–681 (2017)CrossRefGoogle Scholar
  9. 9.
    Daeinabi, A., Rahbar, A.G.P., Khademzadeh, A.: VWCA: an efficient clustering algorithm in vehicular ad hoc networks. J. Netw. Comput. Appl. 34(1), 207–222 (2011)CrossRefGoogle Scholar
  10. 10.
    Dias, J.A.F.F., Rodrigues, J.J.P.C., Xia, F., Mavromoustakis, C.X.: A cooperative watchdog system to detect misbehavior nodes in vehicular delay-tolerant networks. IEEE Trans. Ind. Electron. 62(12), 7929–7937 (2015)CrossRefGoogle Scholar
  11. 11.
    Elmazi, D., Kulla, E., Oda, T., Spaho, E., Sakamoto, S., Barolli, L.: A comparison study of two fuzzy-based systems for selection of actor node in wireless sensor actor networks. J. Ambient Intell. Humanized Comput. 6(5), 635–645 (2015)CrossRefGoogle Scholar
  12. 12.
    Elmazi, D., Sakamoto, S., Oda, T., Kulla, E., Spaho, E., Barolli, L.: Two fuzzy-based systems for selection of actor nodes in wireless sensor and actor networks: a comparison study considering security parameter effect. Mob. Netw. Appl., 1–12 (2016)Google Scholar
  13. 13.
    Fall, K.: A delay-tolerant network architecture for challenged internets. In: Proceedings of the International Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM 2003, pp. 27–34 (2003)Google Scholar
  14. 14.
    Grassi, G., Pesavento, D., Pau, G., Vuyyuru, R., Wakikawa, R., Zhang, L.: VANET via named data networking. In: Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS 2014), pp. 410–415 (2014)Google Scholar
  15. 15.
    Hartenstein, H., Laberteaux, L.: A tutorial survey on vehicular ad hoc networks. IEEE Commun. Mag. 46(6) (2008)CrossRefGoogle Scholar
  16. 16.
    Honda, T., Ikeda, M., Ishikawa, S., Barolli, L.: A message suppression controller for vehicular delay tolerant networking. In: Proceedings of the 29th IEEE International Conference on Advanced Information Networking and Applications (IEEE AINA-2015), pp. 754–760 (2015)Google Scholar
  17. 17.
    Huang, J.L., Yeh, L.Y., Chien, H.Y.: ABAKA: an anonymous batch authenticated and key agreement scheme for value-added services in vehicular ad hoc networks. IEEE Trans. Veh. Technol. 60(1), 248–262 (2011)CrossRefGoogle Scholar
  18. 18.
    Ikeda, M., Ishikawa, S., Barolli, L.: An enhanced message suppression controller for vehicular-delay tolerant networks. In: Proceedings of the 30th IEEE International Conference on Advanced Information Networking and Applications (IEEE AINA-2016), pp. 573–579 (2016)Google Scholar
  19. 19.
    Inaba, T., Obukata, R., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of a QoS-aware fuzzy-based CAC for LAN access. Int. J. Space Based Situated Comput. 6(4), 228–238 (2016)CrossRefGoogle Scholar
  20. 20.
    Inaba, T., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A secure-aware call admission control scheme for wireless cellular networks using fuzzy logic and its performance evaluation. J. Mob. Multimedia 11(3&4), 213–222 (2015)Google Scholar
  21. 21.
    Kandel, A.: Fuzzy Expert Systems. CRC Press, Boca Raton (1991)zbMATHGoogle Scholar
  22. 22.
    Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., Weil, T.: Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun. Surv. Tutorials 13(4), 584–616 (2011)CrossRefGoogle Scholar
  23. 23.
    Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  24. 24.
    Kolici, V., Inaba, T., Lala, A., Mino, G., Sakamoto, S., Barolli, L.: A fuzzy-based CAC scheme for cellular networks considering security. In: The 17th International Conference on Network-Based Information Systems (NBiS-2014), pp. 368–373 (2014)Google Scholar
  25. 25.
    Liu, Y., Sakamoto, S., Matsuo, K., Ikeda, M., Barolli, L.: Improving reliability of JXTA-overlay platform: evaluation for E-learning and trustworthiness. J. Mob. Multimedia 11(2), 34–50 (2015)Google Scholar
  26. 26.
    Liu, Y., Sakamoto, S., Matsuo, K., Ikeda, M., Barolli, L., Xhafa, F.: Improvement of JXTA-overlay P2P platform: evaluation for medical application and reliability. Int. J. Distrib. Syst. Technol. (IJDST) 6(2), 45–62 (2015)CrossRefGoogle Scholar
  27. 27.
    Liu, Y., Sakamoto, S., Matsuo, K., Ikeda, M., Barolli, L., Xhafa, F.: A comparison study for two fuzzy-based systems: improving reliability and security of JXTA-overlay P2P platform. Soft Comput. 20(7), 2677–2687 (2016)CrossRefGoogle Scholar
  28. 28.
    Matsuo, K., Elmazi, D., Liu, Y., Sakamoto, S., Mino, G., Barolli, L.: FACS-MP: a fuzzy admission control system with many priorities for wireless cellular networks and its performance evaluation. J. High Speed Netw. 21(1), 1–14 (2015)CrossRefGoogle Scholar
  29. 29.
    McNeill, F.M., Thro, E.: Fuzzy Logic: A Practical Approach. Academic Press, Boston (1994)zbMATHGoogle Scholar
  30. 30.
    Munakata, T., Jani, Y.: Fuzzy systems: an overview. Commun. ACM 37(3), 68–76 (1994)CrossRefGoogle Scholar
  31. 31.
    Ohn-Bar, E., Trivedi, M.M.: Learning to detect vehicles by clustering appearance patterns. IEEE Trans. Intell. Transp. Syst. 16(5), 2511–2521 (2015)CrossRefGoogle Scholar
  32. 32.
    Procyk, T.J., Mamdani, E.H.: A linguistic self-organizing process controller. Automatica 15(1), 15–30 (1979)CrossRefGoogle Scholar
  33. 33.
    Santi, P.: Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  34. 34.
    Scott, K., Burleigh, S.: Bundle protocol specification. IETF RFC 5050 (Experimental) (2007)Google Scholar
  35. 35.
    Spaho, E., Sakamoto, S., Barolli, L., Xhafa, F., Ikeda, M.: Trustworthiness in P2P: performance behaviour of two fuzzy-based systems for JXTA-overlay platform. Soft Comput. 18(9), 1783–1793 (2014)CrossRefGoogle Scholar
  36. 36.
    Tanenbaum, A.S., Wetherall, D.J.: Computer Networks, 5th edn. Pearson Education Inc., Prentice Hall (2011)Google Scholar
  37. 37.
    Uchida, N., Ishida, T., Shibata, Y.: Delay tolerant networks-based vehicle-to-vehicle wireless networks for road surveillance systems in local areas. Int. J. Space Based Situated Comput. 6(1), 12–20 (2016)CrossRefGoogle Scholar
  38. 38.
    Wen, H., Ho, P.H., Gong, G.: A novel framework for message authentication in vehicular communication networks. In: Global Telecommunications Conference, GLOBECOM 2009, pp. 1–6. IEEE (2009)Google Scholar
  39. 39.
    Zadeh, L.A., Kacprzyk, J.: Fuzzy Logic for the Management of Uncertainty. Wiley, New York (1992)Google Scholar
  40. 40.
    Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Springer Science & Business Media, New York (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kosuke Ozera
    • 1
    Email author
  • Kevin Bylykbashi
    • 1
  • Yi Liu
    • 1
  • Makoto Ikeda
    • 2
  • Leonard Barolli
    • 2
  • Makoto Takizawa
    • 3
  1. 1.Graduate School of EngineeringFukuoka Institute of Technology (FIT)FukuokaJapan
  2. 2.Department of Information and Communication EngineeringFukuoka Institute of Technology (FIT)FukuokaJapan
  3. 3.Department of Advanced Sciences, Faculty of Science and EngineeringHosei UniversityKoganei-ShiJapan

Personalised recommendations