Reliability Analysis of Dynamical Systems

  • Hector JensenEmail author
  • Costas Papadimitriou
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 89)


The use of reduced-order models in the context of reliability analysis of dynamical systems under stochastic excitation is explored in this chapter. A stochastic excitation model based on a point-source model is introduced, and it is used for the generation of ground motions. The corresponding reliability analysis represents a high-dimensional reliability problem whose solution is carried out by an advanced simulation technique. Two application problems are considered in order to evaluate the effectiveness of the proposed model reduction technique. The first example consists of a two-dimensional frame structure, while the second example considers an involved nonlinear finite element building model. The results show that an important reduction in computational effort can be achieved without compromising the accuracy of the reliability estimates.


  1. 1.
    J.G. Anderson, S.E. Hough, A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull. Seism. Soc. Am. 74(5), 1969–1993 (1984)Google Scholar
  2. 2.
    P. Angelikopoulos, C. Papadimitriou, P. Koumoutsakos, Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework. J. Chem. Phys. 137, 1441103-1–144103-19 (2012)Google Scholar
  3. 3.
    P. Angelikopoulus, C. Papadimitriou, P. Koumoutsakos, X-TMCMC: adaptive kriging for Bayesian inverse modeling. Comput. Methods Appl. Mech. Eng. 289, 409–428 (2015)Google Scholar
  4. 4.
    G.M. Atkinson, W. Silva, Stochastic modeling of California ground motions. Bull. Seism. Soc. Am. 90(2), 255–274 (2000)CrossRefGoogle Scholar
  5. 5.
    S.-K. Au, J.L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Eng. Mech. 16(4), 263–277 (2001)CrossRefGoogle Scholar
  6. 6.
    S.-K. Au, Y. Wang, Engineering Risk Assessment with Subset Simulation (Wiley, New York, 2014)CrossRefGoogle Scholar
  7. 7.
    S.-K. Au, E. Patelli, Rare event simulation in finite-infinite dimensional space. Reliab. Eng. Syst. Saf. 148, 67–77 (2016)CrossRefGoogle Scholar
  8. 8.
    B.M. Ayyub, M.M. Gupta, L.N. Kanal, Analysis and Management of Uncertainty: Theory and Applications (Elsevier Scientific Publisher, North-Holland, 1992)zbMATHGoogle Scholar
  9. 9.
    T.T. Baber, Y. Wen, Random vibration hysteretic, degrading systems. J. Eng. Mech. Div. 107(6), 1069–1087 (1981)Google Scholar
  10. 10.
    T.T. Baber, M.N. Noori, Modeling general hysteresis behavior and random vibration applications. J. Vib. Acoust. Stress. Reliab. Des. (ASCE) 108, 411–420 (1986)CrossRefGoogle Scholar
  11. 11.
    C.B. Barber, D.P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    M. Beer, M. Liebscher, Designing robust structures - a nonlinear simulation based approach. Comput. Struct. 86, 1102–1122 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Bitzarakis, M. Papadrakakis, A. Kotsopulos, Parallel solutions techniques in computational structural mechanics. Comput. Methods Appl. Mech. Eng. 148, 75–104 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    D.M. Boore, Simulation of ground motion using the stochastic method. Pure Appl. Geophys. 160(3–4), 635–676 (2003)CrossRefGoogle Scholar
  15. 15.
    D.M. Boore, W.B. Joyner, T.E. Fumal, Equations for estimating horizontal response spectra and peak acceleration from western north american earthquakes: a summary of recent work. Seism. Res. Lett. 68(1), 128–153 (1997)CrossRefGoogle Scholar
  16. 16.
    J.D. Bray, A. Rodrigues-Marek, Characterization of forward-directivity ground motions in the near-fault region. Soil Dyn. Earthq. Eng. 24, 815–828 (2004)CrossRefGoogle Scholar
  17. 17.
    F. Cérou, P. Del Moral, T. Furon, A. Guyader, Sequential Monte Carlo for rare event estimation. Stat. Comput. 22(3), 795–808 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    J. Ching, S.-K. Au, J.L. Beck, Reliability estimation of dynamical systems subject to stochastic excitation using subset simulation with splitting. Comput. Methods Appl. Mech. Eng. 194(12–16), 1557–1579 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    J. Ching, J.L. Beck, S.K. Au, Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation. Probabilistic Eng. Mech. 20(3), 199–214 (2005)CrossRefGoogle Scholar
  20. 20.
    J.P. Conte, B.F. Peng, Full nonstationary analytical earthquake ground-motion model. J. Enginering Mech. 12, 15–34 (1997)CrossRefGoogle Scholar
  21. 21.
    P. Del Moral, A. Doucet, A. Jasra, Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B (Statistical Methodology) 68(3), 411–436 (2006)Google Scholar
  22. 22.
    G. Deodatis, Non-stationary stochastic vector processes: seismic ground motion applications. Probabilistic Eng. Mech. 11, 149–167 (1996)CrossRefGoogle Scholar
  23. 23.
    A. Der Kiureghian, Enginering Design Reliability Handbook (CRC Press, New York, 2004)Google Scholar
  24. 24.
    O. Ditlevsen, O.H. Madsen, Structural Reliability Methods (Wiley, New York, 1996)Google Scholar
  25. 25.
    B. Ellingwood, T.V. Galambos, Probability-based criteria for structural design. Struct. Saf. 1(1), 15–26 (1982)CrossRefGoogle Scholar
  26. 26.
    M. Ester, H.P. Kriegel, J. Sanders, X. Xu, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise (AAAI Press, Cambridge, 1996), pp. 226–231Google Scholar
  27. 27.
    W. Fellin, H. Lessmann, M. Oberguggenberger, R. Vieider (eds.), in Analyzing Uncertainty in Civil Engineering (Springer, Berlin, 2005)Google Scholar
  28. 28.
    G.S. Fishman, Monte Carlo: Concepts, Algorithms and Applications (Springer, New York, 1996)zbMATHCrossRefGoogle Scholar
  29. 29.
    D.M. Frangopol, K. Maute, Life-cycle reliability-based optimization of civil and aerospace structures. Comput. Struct. 81(7), 397–410 (2003)CrossRefGoogle Scholar
  30. 30.
    R. Ghanem, The nonlinear Gaussian spectrum of lognormal stochastic processes and variables. ASME J. Appl. Mech. 66(4), 964–973 (1999)CrossRefGoogle Scholar
  31. 31.
    D.G. Giovanis, I. Papaioannou, D. Straub, V. Papadopoulos, Bayesian updating with subset simulation using artificial neural netwoks. Comput. Methods Appl. Mech. Eng. 319, 124–145 (2017)CrossRefGoogle Scholar
  32. 32.
    D.V. Griffiths, J. Paiboon, J. Huang, G.A. Fenton, Reliability analysis of beams on random elastic foundations. Gotechnique 63(2), 180–188 (2013)CrossRefGoogle Scholar
  33. 33.
    J.E. Hurtado, A.H. Barbat, Monte Carlo techniques in computational stochastic mechanics. Arch. Comput. Methods Eng. 5(1), 3–29 (1998)Google Scholar
  34. 34.
    H.A. Jensen, M.A. Catalan, On the effects of non-linear elements in the reliability-based optimal design of stochastic dynamical systems. Int. J. Non Linear Mech. 42(5), 802–816 (2007)zbMATHCrossRefGoogle Scholar
  35. 35.
    H.A. Jensen, J.G. Sepulveda, On the reliability-based design of structures including passive energy dissipation systems. Struct. Saf. 34, 390–400 (2011)CrossRefGoogle Scholar
  36. 36.
    H.A. Jensen, J. Sepulveda, L. Becerra, Robust stochastic design of base-isolated structural systems. Int. J. Uncertain. Quantif. 2(2), 95–110 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    H.A. Jensen, F. Mayorga, M.A. Valdebenito, Reliability sensitivity estimation of nonlinear structural systems under stochastic excitation: a simulation-based approach. Comput. Methods Appl. Mech. Eng. 289, 1–23 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    H.A. Jensen, D.S. Kusanovic, M.A. Valdebenito, G.I. Schuëller, Reliability-based design optimization of uncertain stochastic systems: a gradient-based scheme. J. Eng. Mech. 138(1), 60–70 (2012)CrossRefGoogle Scholar
  39. 39.
    L.S. Katafygiotis, T. Moand, S.H. Cheung, Auxiliary domain method for solving multi-objective dynamic reliability problems for nonlinear structures. Struct. Eng. Mech. 25(3), 347–363 (2007)CrossRefGoogle Scholar
  40. 40.
    P.S. Koutsourelakis, H.J. Pradlwarter, G.I. Schuëller, Reliability of structures in high dimensions, part I: Algorithms and applications. Probabilistic Eng. Mech. 19(4), 409–417 (2004)CrossRefGoogle Scholar
  41. 41.
    S.L. Kramer, Geotechnical Earthquake Engineering (Prentice Hall, Englewood Cliffs, 2003)Google Scholar
  42. 42.
    N. Kuschel, R. Rackwitz, Two basic problems in reliability-based structural optimization. Math. Methods Oper. Res. 46(3), 309–333 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    P.C. Mahalanobis, On the generalised distance in statistics, in Proceedings of the National Institute of Sciences of India (1936), pp. 49–55Google Scholar
  44. 44.
    G.P. Mavroeidis, A.S. Papageorgiou, A mathematical representation of near-field ground motions. Bull. Seism. Soc. Am. 93(3), 1099–1131 (2003)CrossRefGoogle Scholar
  45. 45.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)CrossRefGoogle Scholar
  46. 46.
    H. Miyake, T. Iwata, K. Irikura, Source characterization for broadband ground-motion simulation: kinematic heterogeneous model and strong motion generation area. Bull. Seism. Soc. Am. 93, 2531–2545 (2003)CrossRefGoogle Scholar
  47. 47.
    D. Moens, D. Vandepitte, A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput. Methods Appl. Mech. Eng. 194, 1527–1555 (2005)zbMATHCrossRefGoogle Scholar
  48. 48.
    B. Möller, M. Beer, Engineering computation under uncertainty - capabilities of non-traditional models. Comput. Struct. 86, 1024–1041 (2008)CrossRefGoogle Scholar
  49. 49.
    O. Möller, R.O. Foschi, L.M. Quiroz, M. Rubinstein, Structural optimization for performance-based design in earthquake engineering: applications of neural networks. Struct. Saf. 31(6), 490–499 (2009)CrossRefGoogle Scholar
  50. 50.
    R.M. Neal, Annealed importance sampling. Stat. Comput. 11(2), 125–139 (2001)MathSciNetCrossRefGoogle Scholar
  51. 51.
    A. Nozu, A super asperity model for the 2011 off Pacific coast of Tohoku earthquake. J. Jpn. Assoc. Earthq. Eng. 14(6), 36–55 (2014)Google Scholar
  52. 52.
    A. Nozu, M. Yamada, T. Nagao, K. Irikura, Generation of strong motion pulses during huge subduction earthquakes and scaling of their generation areas. J. Jpn. Assoc. Earthq. Eng. 14(6), 96–117 (2014)Google Scholar
  53. 53.
    C. Papadimitriou, Stochastic Characterization of Strong Ground Motions and Application to Structure Response. Rep. No. EERL 90-03 (California Institute of Technology, Pasadena, California, USA, 1990)Google Scholar
  54. 54.
    Y.J. Park, Y.K. Wen, A.H. Ang, Random vibration of hysteretic systems under bi-directional ground motions. Earthq. Eng. Struct. Dyn. 14(4), 543–557 (1986)CrossRefGoogle Scholar
  55. 55.
    M.F. Pellissetti, Parallel processing in structural reliability. J. Struct. Eng. Mech. 32(1), 95–126 (2009)CrossRefGoogle Scholar
  56. 56.
    H.J. Pradlwarter, G.I. Schuëller, P.S. Koutsourelakis, D.C. Champris, Application of line sampling simulation method to reliability benchmark problems. Struct. Saf. 29(3), 208–221 (1998)CrossRefGoogle Scholar
  57. 57.
    S. Rezaeian, A. Der Kiureghian, A stochastic ground motion model with separable temporal and spectral nonstationarities. Earthq. Eng. Struct. Dyn. 37, 1565–1584 (2008)Google Scholar
  58. 58.
    J.O. Royset, A. Der Kiureghian, E. Polak, Reliability-based optimal structural design by the decoupling approach. Reliab. Eng. Syst. Saf. 73(3), 213–221 (2001)CrossRefGoogle Scholar
  59. 59.
    R.Y. Rubinstein, D.P. Kroese, Simulation and Monte Carlo Method (Wiley, New York, 2007)zbMATHCrossRefGoogle Scholar
  60. 60.
    F. Sabetta, A. Plugliese, Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull. Seism. Soc. Am. 86, 337–352 (1996)Google Scholar
  61. 61.
    G.R. Saragoni, G.C. Hart, Simulation of artificial earthquakes. Earthq. Eng. Struct. Dyn. 2(3), 249–267 (1974)CrossRefGoogle Scholar
  62. 62.
    G.I. Schuëller, H.J. Pradlwarter, Benchmark study on reliability estimation in higher dimensions of structural systems - an overview. Struct. Saf. 29, 167–182 (2007)CrossRefGoogle Scholar
  63. 63.
    T. Soong, M. Grigoriu, Random Vibration of Mechanical and Structural Systems (Prentice Hall, Englewood Cliffs, 1993)zbMATHGoogle Scholar
  64. 64.
    B. Sudret, Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report (University of California, Berkeley, 2000)Google Scholar
  65. 65.
    A. Taflanidis, Robust stochastic design of viscous dampers for base isolation applications, in ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rhodes, Greece, 22–24 June 2009Google Scholar
  66. 66.
    P.K. Umesha, M.T. Venuraju, D. Hartmann, K.R. Leimbach, Optimal design of truss structures using parallel computing. Struct. Multidiscip. Optim. 29, 285–297 (2005)CrossRefGoogle Scholar
  67. 67.
    A. Zerva, Spatial Variation of Seismic Ground Motions Modeling and Engineering Applications (CRC Press, Boca Raton, 2003)Google Scholar
  68. 68.
    Y. Zhang, A. Der Kiureghian, First-excursion probability of uncertain structures. Probabilistic Eng. Mech. 9(1–2), 135–143 (1994)CrossRefGoogle Scholar
  69. 69.
    K.M. Zuev, L.S. Katafygiotis, The Horseracing simulation algorithm for evaluation of small failure probabilities. Probabilistic Eng. Mech. 26(2), 157–164 (2011)CrossRefGoogle Scholar
  70. 70.
    K.M. Zuev, J.L. Beck, S.-K. Au, L.S. Katafygiotis, Bayesian post-processor and other enhancements of subset simulation for estimating failure probabilities in high dimensions. Comput. Struct. 92, 283–296 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Federico Santa María Technical UniversityValparaisoChile
  2. 2.University of ThessalyVolosGreece

Personalised recommendations