Advertisement

Hybrid HIL Testing of Floating Wind Turbines Within LIFES50+ Project

  • I. BayatiEmail author
  • L. Bernini
  • A. Facchinetti
  • A. Fontanella
  • H. Giberti
  • A. Zasso
  • M. Belloli
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 27)

Abstract

This paper describes the innovative experimental approach, introduced by the authors in the framework of the EU H2020 project LIFES50+, to perform scale model tests on floating offshore wind turbines (FOWTs). A 6-DOFs hardware-in-the-loop (HIL) system was designed and realized to reproduce the global FOWT response to wind and waves in the atmospheric boundary layer (ABL) of the Politecnico di Milano (PoliMi) wind tunnel. A 2-DOFs (surge and pitch) HIL system was used to perform preliminary tests, assessing the capabilities of the hybrid experimental methodology, and to gather data for the finalization of the 6-DOFs setup. Results from the first experimental campaign are discussed, showing the effect of aerodynamic loads on the coupled FOWT response.

Keywords

Floating offshore wind turbines Wind tunnel testing Hardware-in-the-loop Unsteady aerodynamics Control 

References

  1. Bak C. et al (2013) Description of the DTU 10 MW reference wind turbine. DTU Wind Energy ReportGoogle Scholar
  2. Bayati I, Belloli M, Ferrari D et al (2014) Design of a 6-DoF robotic platform for wind tunnel tests of floating wind turbines. Energy Proc 53:313–323CrossRefGoogle Scholar
  3. Bayati I, Bernini L, Fiore E et al (2016) On the functional design of the DTU 10 MW wind turbine scale model of LIFES50+ project. J Phys: Conf Ser 735(5):052018Google Scholar
  4. Bayati I, Belloli M, Bernini L et al (2017a) Scale model technology for floating offshore wind turbines. IET Renew Power Gener 11(9):1120–1126CrossRefGoogle Scholar
  5. Bayati I, Bernini L, Belloli M et al (2017b) Aerodynamic design methodology for wind tunnel tests of wind turbine rotors. J Wind Eng Ind AerodynGoogle Scholar
  6. Bayati I, Belloli M, Facchinetti A (2017c) Wind Tunnel 2-DOF Hybrid/HIL tests on the OC5 floating offshore wind turbine. In: Proceedings of 36th international conference on ocean, offshore and arctic engineering, OMAE 2017Google Scholar
  7. Bayati I, Facchinetti A, Fontanella A, Belloli M. (2018) 6-DOF hydrodynamic modelling for wind tunnel tests of FOWT: the real-time challenge. In: 37th international conference on ocean, offshore and arctic engineering, OMAE 2018. (forthcoming)Google Scholar
  8. Fiore E, Giberti H (2016) Optimization and comparison between two 6-DoF parallel kinematic machines for HIL simulations in wind tunnel. In: MATEC Web of ConferencesGoogle Scholar
  9. Goupee AJ, Koo BJ, Kimball RW et al (2014) Experimental comparison of three floating wind turbine concepts. J Offshore Mech Arctic Eng 136:020906CrossRefGoogle Scholar
  10. Goupee AJ, Kimball RW, Dagher HJ (2017) Experimental observations of active blade pitch and generator control influence on floating wind turbine response. Renew Energy 104:9–19CrossRefGoogle Scholar
  11. Jonkman JM (2007) Dynamics modeling and loads analysis of an offshore floating wind turbine. Technical report NREL/TP-500–41958Google Scholar
  12. Koo BJ, Goupee AJ, Kimball RW et al (2014) Model Tests for a Floaitng Wind Turbine on Three Different Floaters. J Offshore Mech Arctic Eng 136:020907CrossRefGoogle Scholar
  13. Martin HR, Kimball RW, Viselli AM et al (2014) Methodology for wind/wave basin testing of floating offshore wind turbines. J Offshore Mech Arctic Eng 136(2):020905CrossRefGoogle Scholar
  14. Jonkman J, Buhl M (2005) FAST user’s guide. Technical report NRELGoogle Scholar
  15. Robertson A, Jonkman J, Wendt F et al (2016) Definition of the OC5 DeepCwind semisubmersible floating system. Technical report NRELGoogle Scholar
  16. Sauder T, Chabaud V, Thys M et al (2016) Real-time hybrid model testing of a braceless semi-submersible wind turbine. Part I: the hybrid approach. In: International conference on offshore mechanics and arctic engineering – OMAEGoogle Scholar
  17. Stewart G, Lackner M, Robertson A et al (2012). Calibration and validation of a FAST wind turbine model of the DeepCwind scaled tension-leg platform. In: Conference paper, national renewable energy laboratoryGoogle Scholar
  18. Yu W, Lemmer F, Bredmose H et al (2017) The TripleSpar campaign: implementation and test of a blade pithc controller on a scaled floating wind turbine model. In: 14th deep sea offshore wind R&D conference EERA DeepWindGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • I. Bayati
    • 1
    Email author
  • L. Bernini
    • 1
  • A. Facchinetti
    • 1
  • A. Fontanella
    • 1
  • H. Giberti
    • 2
  • A. Zasso
    • 1
  • M. Belloli
    • 1
  1. 1.Department of Mechanical EngineeringPolitecnico di MilanoMilanItaly
  2. 2.Dipartimento di Ingegneria Industriale e dell’InformazioneUniversità di PaviaPaviaItaly

Personalised recommendations