Advertisement

A Model Extension for Vortex-Induced Vibrations

  • F. LupiEmail author
  • H.-J. Niemann
  • R. Höffer
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 27)

Abstract

The paper presents free-vibration wind tunnel tests performed at WIST Boundary Layer Wind Tunnel at Ruhr-Universität Bochum (Germany) on a 3D aeroelastic cylindrical model with circular cross-section. The aim of the tests is to validate a model extension to the original spectral method developed by Vickery & Basu, able to calculate the maximum oscillation of a structure subjected to vortex-induced vibration in the lock-in region. The peculiarity of the extension is the implementation of an experimental curve for the negative aerodynamic damping. It was previously developed by the authors through forced vibration wind tunnel tests. The model extension is based on a linear differential equation. In fact, linear – in case iterative – approaches are usually preferred for the design of structures. However, limitations due to linearization of an intrinsically non-linear phenomenon are unavoidable. Strengths and weaknesses of the linear approach are discussed in the paper.

Keywords

Circular cylinder Free-vibration wind tunnel tests Vortex-induced vibrations Vortex shedding Vortex resonance Aerodynamic damping 

Notes

Acknowledgements

The first author would like to acknowledge the Alexander von Humboldt Foundation (Germany) for the support to this research and the European Commission’s Framework Program “Horizon 2020”, through the Marie Skłodowska-Curie Innovative Training Networks (ITN) “AEOLUS4FUTURE - Efficient harvesting of the wind energy” (H2020-MSCA-ITN-2014: Grant agreement no. 643167) for the possibility of cooperation.

References

  1. Arunachalam S, Lakshmanan N (2015) Across-wind response of tall circular chimneys to vortex shedding. J Wind Eng Ind Aerodyn 145:187–195CrossRefGoogle Scholar
  2. Basu RI, Vickery BJ (1983) Across-wind vibrations of structures of circular cross-section. Part II: development of a mathematical model for full-scale application. J Wind Eng Ind Aerodyn 12:75–97CrossRefGoogle Scholar
  3. Benaroya H, Lepore JA (1983) Statistical flow-oscillator modeling of vortex-shedding. J Sound Vib 86(2):159–179CrossRefGoogle Scholar
  4. Billah KZR (1989) A study of vortex-induced vibrations. PhD-thesis, Princeton UniversityGoogle Scholar
  5. Bishop RED, Hassan AY (1964) The lift and drag forces on an oscillating cylinder. In: Proceedings of the royal society, vol 277Google Scholar
  6. Blevins RD (1990) Flow-Induced Vibration. Van Nostrand Reinhold Co., Inc., New YorkzbMATHGoogle Scholar
  7. CICIND Model Code for Steel Chimneys, The CICIND Chimney Standard (2010)Google Scholar
  8. CICIND Commentaries for Steel Chimney Code (2011)Google Scholar
  9. Dowell EH (1981) Non-linear oscillator models in bluff body aero-elasticity. J Sound Vib 75(2):251–264MathSciNetCrossRefGoogle Scholar
  10. Ehsan F, Scanlan RH (1990) Vortex-induced vibrations of flexible bridges. J Eng Mech 116(6):1392–1411CrossRefGoogle Scholar
  11. Eurocode 1: Actions on Structures, Part 1–4: General actions - Wind actions (2010)Google Scholar
  12. Facchinetti ML, De Langre E, Biolley F (2004) Coupling of structure and wake oscillators in vortex-induced vibrations. J Fluids Struct 19(2):123–140CrossRefGoogle Scholar
  13. Farshidianfar A, Zangeneh H (2010) A modified wake oscillator model for vortex-induced vibration of circular cylinders for a wide range of mass-damping ratio. J Fluids Struct 26(3):430–441CrossRefGoogle Scholar
  14. Flaga A (1997) Nonlinear amplitude dependent self-limiting model of lock-in phenomenon at vortex shedding. J Wind Eng Ind Aerodyn 69–71:331–340CrossRefGoogle Scholar
  15. Goswami I, Scanlan RH, Jones NP (1993) Vortex-induced vibration of circular cylinders. J Eng Mech 119(11):2270–2287CrossRefGoogle Scholar
  16. Griffin OM, Skop RA, Koopmann GH (1973) The vortex-excited resonant vibrations of circular cylinders. J Sound Vib 31(2):235–249CrossRefGoogle Scholar
  17. Hansen SO (2013) Vortex-induced vibrations – the Scruton number revisited. In: Proceedings of the institution of civil engineers – structures and buildings, vol 166, no 10, pp 560–571CrossRefGoogle Scholar
  18. Hartlen RT, Currie IG (1970) Lift-oscillator model of vortex-induced vibration. J Eng Mech Div ASCE 96:577–591Google Scholar
  19. Iwan WD, Blevins RD (1974) A model for vortex induced oscillation of structures. J Appl Mech 41(3):581–586CrossRefGoogle Scholar
  20. Krenk S, Nielsen SRK (1999) Energy balanced double oscillator model for vortex-induced vibrations. J Eng Mech 125(3):263–271CrossRefGoogle Scholar
  21. Landl R (1975) A mathematical model for vortex-excited vibrations of bluff bodies. J Sound Vib 42(2):219–234CrossRefGoogle Scholar
  22. Larsen A (1995) A generalized model for assessment of vortex-induced vibrations of flexible structures. J Wind Eng Ind Aerodyn 57(2–3):281–294CrossRefGoogle Scholar
  23. Lupi F, Niemann H-J, Höffer R (2017) A novel spectral method for cross-wind vibrations: application to 27 full-scale chimneys. J Wind Eng Ind Aerodyn 171:353–365CrossRefGoogle Scholar
  24. Lupi F, Niemann H-J, Höffer R (2018) Aerodynamic damping model in vortex induced vibrations for wind engineering applications. J Wind Eng Ind Aerodyn 174:281–295CrossRefGoogle Scholar
  25. Náprstek J, Fischer C (2017) Analysis of the quasiperiodic response of a generalized van der Pol nonlinear system in the resonance zone. Comput Struct (in press).  https://doi.org/10.1016/j.compstruc.2017.07.021CrossRefGoogle Scholar
  26. Ogink RHM, Metrikine AV (2010) A wake oscillator with frequency dependent coupling for the modelling of vortex-induced vibration. J Sound Vib 329:5452–5473CrossRefGoogle Scholar
  27. Plaschko P (2000) Global chaos in flow-induced oscillations of cylinders. J Fluids Struct 14(6):883–893CrossRefGoogle Scholar
  28. Ruscheweyh H (1986) Ein verfeinertes, praxisnahes Berechnungsverfahren wirbelerregter Schwingungen von schlanken Baukonstruktionen im Wind. Beiträge zur Anwendung der Aeroelastik im Bauwesen, Heft 20. Innsbruck Lausanne (in German)Google Scholar
  29. Scanlan RH (1981) On the state-of-the-art methods for calculation of flutter, vortex-induced and buffeting response of bridge structures. FHWA/RD-80/050, National Technical Information Service, Springfield, VAGoogle Scholar
  30. Scruton C (1963) On the wind-excited oscillations of stacks, towers and masts. In: International Conference on Wind Effects on Buildings and Structures, Teddington, UK, 26–28 June 1963Google Scholar
  31. Simiu E, Scanlan RH (1986) Wind effects on structures: an introduction to wind engineering, 2nd edn. Wiley, HobokenGoogle Scholar
  32. Skop RA, Griffin OM (1973) A model for the vortex-excited resonant response of bluff cylinders. J Sound Vib 27(2):225–233CrossRefGoogle Scholar
  33. Skop RA, Griffin OM (1975) On a theory for the vortex-excited oscillations of flexible cylindrical structures. J Sound Vib 41(3):263–274CrossRefGoogle Scholar
  34. Skop RA, Luo G (2001) An inverse-direct method for predicting the vortex-induced vibrations of cylinders in uniform and nonuniform flows. J Fluids Struct 15(6):867–884CrossRefGoogle Scholar
  35. Tamura Y, Matsui G (1980) Wake oscillator model of vortex-induced oscillation of circular cylinder. In: Proceedings of the fifth international conference on wind engineering, Fort Collins, vol 2, pp 1085–1094CrossRefGoogle Scholar
  36. Vickery BJ, Clark AW (1972) Lift or crosswind response of tapered stacks. J Struct Div ASCE 98(ST1):1–20Google Scholar
  37. Vickery BJ, Basu RI (1983) Across-wind vibrations of structures of circular cross-section. Part I: development of a mathematical model for two-dimensional conditions. J Wind Eng Ind Aerodyn 12:49–73CrossRefGoogle Scholar
  38. Williamson CHK, Govardhan R (2008) A brief review of recent results in vortex-induced vibrations. J Wind Eng Ind Aerodyn 96:713–735CrossRefGoogle Scholar
  39. Sun Y, Li M, Liao H (2014) Nonlinear approach of vortex-induced vibration for line-like structures. J Wind Eng Ind Aerodyn 124:1–6CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental Engineering, Department of Wind Engineering and Flow MechanicsRuhr-Universität BochumBochumGermany
  2. 2.Niemann & Partner IngenieurgesellschaftBochumGermany

Personalised recommendations