Advertisement

On Small Universality of Spiking Neural P Systems with Multiple Channels

  • Xiaoxiao SongEmail author
  • Hong Peng
  • Jun Wang
  • Guimin Ning
  • Tao Wang
  • Zhang Sun
  • Yankun Xia
Conference paper
  • 159 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11399)

Abstract

SN P systems with multiple channels are a new variant of spiking neural P systems (SN P systems, in short), which introduce channel labels into spiking rules. The computational power of SN P systems with multiple channels in computing Turing computable function is investigated, and two small SN P systems with multiple channels are constructed in this work. We obtain two universal systems with 57 neurons using standard spiking rules and 39 neurons using extended spiking rules, respectively.

Keywords

Membrane computing Spiking neural P systems Multiple channels Small universal systems Computing function 

References

  1. 1.
    Pǎun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Pǎun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002).  https://doi.org/10.1007/978-3-642-56196-2zbMATHCrossRefGoogle Scholar
  3. 3.
    Martín-Vide C., Pǎun G., Pazos J., Rodríguez-Patón A.: Tissue P systems. Theor. Comput. Sci. 296, 295–326 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Pǎun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Ionescu, M., Pǎun, G., Yokomori, T.: Spiking neural P systems. Fundam. Informaticae 71, 279–309 (2006)Google Scholar
  6. 6.
    Pǎun, A., Pǎun, G.: Small universal spiking neural P systems. BioSystems 90(1), 48–60 (2007)zbMATHCrossRefGoogle Scholar
  7. 7.
    Neary, T.: A universal spiking neural P system with 11 neurons. In: Proceedings of the Eleventh International Conference on Membrane Computing, pp. 327–346. Springer, Jena (2010)Google Scholar
  8. 8.
    Neary, T.: Three small universal spiking neural P systems. Theor. Comput. Sci. 567, 2–20 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Zhang, X., Zeng, X., Pan, L.: Smaller universal spiking neural P systems. Fundam. Informaticae 87(1), 117–136 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Neary, T.: A boundary between universality and non-universality in extended spiking neural P systems. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 475–487. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13089-2_40zbMATHCrossRefGoogle Scholar
  11. 11.
    Chen, H., Freund, R., Ionescu, M., Pǎun, G., Pérez-Jiménez, M.: On string languages generated by spiking neural P systems. Fundam. Informaticae 75(1), 141–162 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Pǎun, G., Pérez-Jiménez, M., Rozenberg, G.: Spike trains in spiking neural P systems. Int. J. Found. Comput. Sci. 17(4), 975–1002 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Wang, J., Hoogeboom, H.J., Pan, L., Pǎun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with weights. Neural Comput. 22(10), 2615–2646 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Zeng, X., Zhang, X., Song, T., Pan, L.: Spiking neural P systems with thresholds. Neural Comput. 26(7), 1340–1361 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Pan, L., Zeng, X., Zhang, X., Jiang, Y.: Spiking neural P systems with weighted synapses. Neural Process. Lett. 35(1), 13–27 (2012)CrossRefGoogle Scholar
  16. 16.
    Zeng, X., Pan, L., Pérez-Jiménez, M.J.: Small universal simple spiking neural P systems with weights. Sci. China Inf. Sci. 57(9), 1–11 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang, X., Zeng, X., Pan, L.: Weighted spiking neural P systems with rules on synapses. Fundam. Informaticae 134(1–2), 201–218 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Zeng, X., Xu, L., Liu, X., Pan, L.: On languages generated by spiking neural P systems with weights. Inf. Sci. 278(10), 423–433 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Song, T., Pan, L., Pǎun, G.: Spiking neural P systems with rules on synapses. Theor. Comput. Sci. 529(4), 82–95 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Song, T., Xu, J., Pan, L.: On the universality and non-universality of spiking neural P systems with rules on synapses. IEEE Trans. Nanobiosci. 14(8), 960–966 (2015)CrossRefGoogle Scholar
  21. 21.
    Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. Theor. Comput. Sci. 14(1), 38–44 (2015)Google Scholar
  22. 22.
    Pan, L., Pǎun, G.: Spiking neural P systems with anti-spikes. Int. J. Comput. Commun. Control IV(3), 273–282 (2009)CrossRefGoogle Scholar
  23. 23.
    Krithivasan, K., Metta, V.P., Garg, D.: On string languages generated by spiking neural P systems with anti-spikes. Int. J. Found. Comput. Sci. 22(1), 15–27 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Pan, L., Wang, J., Hoogeboom, H.J.: Spiking neural P systems with astrocytes. Neural Comput. 24(3), 805–825 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Song, T., Gong, F., Liu, X., Zhao, Y., Zhang, X.: Spiking neural P systems with white hole neurons. IEEE Trans. Nanobiosci. 15(7), 666–673 (2016)CrossRefGoogle Scholar
  26. 26.
    Zhang, X., Pan, L., Pǎun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2816–2829 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zeng, X., Zhang, X., Pan, L.: Homogeneous spiking neural P systems. Fundam. Informaticae 97(1), 275–294 (2009)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Song, T., Wang, X., Zhang, Z., Chen, Z.: Homogeneous spiking neural P systems with anti-spikes. Neural Comput. Appl. 24(7–8), 1833–1841 (2014)CrossRefGoogle Scholar
  29. 29.
    Jiang, K., Chen, W., Zhang, Y., Pan, L.: Spiking neural P systems with homogeneous neurons and synapses. Neurocomputing 171(C), 1548–1555 (2015)Google Scholar
  30. 30.
    Song, T., Zheng, P., Wong, M.L.D., Wang, X.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci. 372, 380–391 (2016)CrossRefGoogle Scholar
  31. 31.
    Ibarra, O.H., Pǎun, A., Rodríguez-Patón, A.: Sequential SNP systems based on min/max spike number. Theor. Comput. Sci. 410(30), 2982–2991 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Song, T., Pan, L., Jiang, K., Song, B., Chen, W.: Normal forms for some classes of sequential spiking neural P systems. IEEE Trans. NanoBiosci. 12(3), 255–264 (2013)CrossRefGoogle Scholar
  33. 33.
    Zhang, X., Zeng, X., Luo, B., Pan, L.: On some classes of sequential spiking neural P systems. Neural Comput. 26(5), 974–997 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Zhang, X., Luo, B., Fang, X., Pan, L.: Sequential spiking neural P systems with exhaustive use of rules. BioSystems 108(1–3), 52–62 (2012)CrossRefGoogle Scholar
  35. 35.
    Cavaliere, M., Ibarra, O.H., Pǎun, G., Egecioglu, O., Ionescu, M., Woodworth, S.: Asynchronous spiking neural P systems. Theor. Comput. Sci. 410(24), 2352–2364 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Song, T., Pan, L., Pǎun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219(24), 197–207 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Song, T., Zou, Q., Liu, X., Zeng, X.: Asynchronous spiking neural P systems with rules on synapses. Neurocomputing 151(3), 1439–1445 (2015)CrossRefGoogle Scholar
  38. 38.
    Peng, H., Wang, J., Pérez-Jiménez, M.J., Wang, H., Shao, J., Wang, T.: Fuzzy reasoning spiking neural P system for fault diagnosis. Inf. Sci. 235(6), 106–116 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Wang, J., Peng, H.: Adaptive fuzzy spiking neural P systems for fuzzy inference and learning. Int. J. Comput. Math. 90(4), 857–868 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., Pérez-Jiménez, M.J.: Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Trans. Power Syst. 30(3), 1182–1194 (2015)CrossRefGoogle Scholar
  41. 41.
    Tu, M., Wang, J., Peng, H., Shi, P.: Application of adaptive fuzzy spiking neural P systems in fault diagnosis of power systems. Chin. J. Electron. 23(1), 87–92 (2014)Google Scholar
  42. 42.
    Wang, T., Zhang, G., Pérez-Jiménez, M.J., Cheng, J.: Weighted fuzzy reasoning spiking neural P systems: application to fault diagnosis in traction power supply systems of high-speed railways. J. Comput. Theor. Nanosci. 12(7), 1103–1114 (2015)CrossRefGoogle Scholar
  43. 43.
    Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M.J., Wang, T.: Weighted fuzzy spiking neural P systems. IEEE Trans. Fuzzy Syst. 21(2), 209–220 (2013)CrossRefGoogle Scholar
  44. 44.
    Wang, T., Zhang, G., Pérez-Jiménez, M.J.: Fuzzy membrane computing: theory and applications. Int. J. Comput. Commun. Control 10(6), 904–935 (2015)Google Scholar
  45. 45.
    Díaz-Pernil, D., Peńa-Cantillana, F., Gutiérrez-Naranjo, M.A.: A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing 115, 81–91 (2013)CrossRefGoogle Scholar
  46. 46.
    Zhang, G., Rong, H., Neri, F., Pérez-Jiménez, M.J.: An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int. J. Neural Syst. 24(5), 1440006 (2014)CrossRefGoogle Scholar
  47. 47.
    Ishdorj, T.O., Leporati, A., Pan, L., Zeng, X., Zhang, X.: Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theor. Comput. Sci. 411(25), 2345–2358 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Leporati, A., Mauri, G., Zandron, C., Pǎun, G., Pérez-Jiménez, M.J.: Uniform solutions to SAT and Subset Sum by spiking neural P systems. Nat. Comput. 8(4), 681–702 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Pan, L., Pǎun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron division and budding. Sci. China Inf. Sci. 54(8), 1596–1607 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., Lou, X., Huang, X.: Spiking neural P systems with multiple channels. Neural Netw. 95, 66–71 (2017)CrossRefGoogle Scholar
  51. 51.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer, Berlin (1997).  https://doi.org/10.1007/978-3-642-59136-5zbMATHCrossRefGoogle Scholar
  52. 52.
    Korec, I.: Small universal register machines. Theor. Comput. Sci. 168(2), 267–301 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Wu, T., Zhang, Z., Pǎun, G., Pan, L.: Cell-like spiking neural P systems. Theor. Comput. Sci. 623(11), 180–189 (2016)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xiaoxiao Song
    • 1
    • 2
    Email author
  • Hong Peng
    • 3
  • Jun Wang
    • 1
    • 2
  • Guimin Ning
    • 4
  • Tao Wang
    • 1
    • 2
  • Zhang Sun
    • 1
    • 2
  • Yankun Xia
    • 1
    • 2
  1. 1.Key Laboratory of Fluid and Power Machinery, Ministry of EducationXihua UniversityChengduPeople’s Republic of China
  2. 2.School of Electrical Engineering and Electronic InformationXihua UniversityChengduPeople’s Republic of China
  3. 3.School of Computer and Software EngineeringXihua UniversityChengduPeople’s Republic of China
  4. 4.Department of Information EngineeringChengdu Industry and Trade CollegeChengduPeople’s Republic of China

Personalised recommendations