Advertisement

Pulses and Mineral Bioavailability in Low Income Countries

  • Susan J. WhitingEmail author
  • Getenesh Berhanu
  • Hiwot Abebe Haileslassie
  • Carol J. Henry
Chapter

Abstract

Pulse crops are important sources of nutrients in low income countries (LIC). Not only do they provide good sources of proteins when mixed with cereals, but they also contain good to very good sources of key minerals such as iron, zinc and calcium. These minerals are important for growth and development of children as well as women’s health. Pulses, however, contain phytate and polyphenols, and these can bind to divalent minerals and prevent absorption, thus limiting bioavailability. Home processing methods of soaking, germination and fermentation can reduce the effects of phytate and polyphenols.

Keywords

Pulses Legume Micronutrient Bioavailability Antinutrients Phytate Biofortification Calcium Iron Zinc 

References

  1. Ali M, Shuja MN, Zahoor M et al (2010) Phytic acid: how far have we come? Afr J Biotechnol 9:1551–1554CrossRefGoogle Scholar
  2. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191CrossRefGoogle Scholar
  3. Costa D, Almeida DA, Pissini SQ et al (2006) Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 94:327–330CrossRefGoogle Scholar
  4. Egli I, Davidsson L, Juillerat MA et al (2002) The influence of soaking and germination on the phytase activity and phytic acid content of grains and seeds potentially useful for complementary feeding. J Food Sci 67:3484–3488CrossRefGoogle Scholar
  5. Etcheverry P, Grusak MA, Fleige LE (2002) Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B(6), B(12), D, and E. Front Physiol 3:317.  https://doi.org/10.3389/fphys.2012.00317.CrossRefGoogle Scholar
  6. Fairweather-Tait S, Phillips I, Wortley G et al (2007) The use of solubility, dialyzability, and Caco-2 cell methods to predict iron bioavailability. Int J Vit Nutr Res 77:158–165CrossRefGoogle Scholar
  7. Fraga CG, Galleano M, Verstraeten SV et al (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Asp Med 31:435–445CrossRefGoogle Scholar
  8. Fulgoni VL, Keast DR, Bailey RL et al (2011) Foods, fortificants, and supplements: where do Americans get their nutrients? J Nutr 141:1847–1854CrossRefGoogle Scholar
  9. García-Nebot MJ, Barberá R, Alegría A (2013) Iron and zinc bioavailability in Caco-2 cells: influence of caseinophosphopeptides. Food Chem 138:1298–1303CrossRefGoogle Scholar
  10. Gibson R (2011) Strategies for preventing multi-micronutrient deficiencies: a review of experiences with food-based approaches in developing countries, in combating micronutrient deficiencies. In: FAO and CABI, food-based approaches. p 7–27Google Scholar
  11. Gibson R, Perlas L, Hotz C (2006) Improving the bioavailability of nutrients in plant foods at the household level. Proc Nutr Soc 65:160–168CrossRefGoogle Scholar
  12. Gibson RS, Bailey KB, Gibbs M et al (2010) A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr Bull 31(2 Suppl):S134–S146CrossRefGoogle Scholar
  13. Gibson RS, Raboy V, King JC (2018) Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr Rev 76:793–804CrossRefGoogle Scholar
  14. Glahn R, Wortley GM, South PK et al (2002) Inhibition of iron uptake by phytic acid, tannic acid, and zncl2: studies using an in vitro digestion/Caco-2 cell model. J Agric Food Chem 50:390–395CrossRefGoogle Scholar
  15. Gupta R, Gangoliya S, Singh N (2015) Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 52:676–684CrossRefGoogle Scholar
  16. Haas JD, Luna SV, Lung’aho MG et al (2016) Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial. J Nutr 146:1586–1592CrossRefGoogle Scholar
  17. Haileslassie H, Henry C, Tyler R (2016) Impact of household food processing strategies on antinutrient (phytate, tannin and polyphenol) contents of chickpeas (Cicerarietinum L.) and beans (Phaseolus vulgaris L.): a review. Int J Food Sci Technol 51:1947–1957CrossRefGoogle Scholar
  18. Henry C, Elabor- Idemudia P, Tsegaye G et al (2016) A gender framework for ensuring sensitivity to women’s role in pulse production in southern Ethiopia. J Agric Sci 8:80–90Google Scholar
  19. Hotz C (2005) Evidence for the usefulness of in vitro dialyzability, Caco-2 cell models, animal models, and algorithms to predict zinc bioavailability in humans. Int J Vit Nutr Res 75:423–435CrossRefGoogle Scholar
  20. Hotz C, Gibson R (2007) Traditional food processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J Nutr 137:1097–1100CrossRefGoogle Scholar
  21. Hurrell R (2002) Bioavailability – a time for reflection. Int J Vit Nutr Res 72:5–6CrossRefGoogle Scholar
  22. Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91:1461S–1467SCrossRefGoogle Scholar
  23. Kumar V, Sinha AK, Makkar HPS et al (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120:945–959CrossRefGoogle Scholar
  24. Lönnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130:1378S–1383SCrossRefGoogle Scholar
  25. Lopez H, Leenhardt F, Coudray C et al (2002) Minerals and phytic acid interactions: is it real problem for human nutrition? Int J Food Sci Technol 37:727–739CrossRefGoogle Scholar
  26. Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747CrossRefGoogle Scholar
  27. Naczk M, Shahidi F (2004) Extraction and analysis of phenolics in food. J Chromatog A 1054:95–111CrossRefGoogle Scholar
  28. Nergiz C, Gökgöz E (2007) Effects of traditional cooking methods on some antinutrients and in vitro protein digestibility of dry bean varieties (Phaseolus vulgaris L.) grown in Turkey. Int J Food Sci Technol 42:868–873CrossRefGoogle Scholar
  29. Oatway L, Vasanthan T, Helm JH (2001) Phytic acid. Food Rev Int 17:419–431CrossRefGoogle Scholar
  30. Petry N, Egli I, Zeder C et al (2010) Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr 140:1977–1982CrossRefGoogle Scholar
  31. Platel K, Srinivasan K (2016) Bioavailability of micronutrients from plant foods: an update. Crit Rev Food Sci Nutr 56:1608–1619CrossRefGoogle Scholar
  32. Pynaert I, Armah C, Fairweather-Tait S et al (2006) Iron solubility compared with in vitro digestion–Caco-2 cell culture method for the assessment of iron bioavailability in a processed and unprocessed complementary food for Tanzanian infants (6–12 months). Br J Nutr 95:721–726CrossRefGoogle Scholar
  33. Ray H, Bett K, Tar’an B et al (2014) Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop Sci 54:1698–1708CrossRefGoogle Scholar
  34. Ruel M, Alderman H (2013) Nutrition-sensitive interventions and programmes: how can they help to accelerate progress in improving maternal and child nutrition? Lancet 382:536–551CrossRefGoogle Scholar
  35. Sandberg A (2002) Bioavailability of minerals in legumes. Br J Nutr 88(S3):S281–S285CrossRefGoogle Scholar
  36. Siddiq M, Uebersax MA (2012) Dry beans and pulses production and consumption—an overview. In: Siddiq M, Uebersax MA (eds) Dry beans and pulses production, processing and nutrition. Blackwell Publishing Ltd, Oxford.  https://doi.org/10.1002/9781118448298.ch1CrossRefGoogle Scholar
  37. Tako E, Vandenberg A, Thavarajah D et al (2011) Iron bioavailability in lentil based diets: studies in poultry and in vitro digestion/Caco-2 model. J Fed Am Soc Exp 25:607.8Google Scholar
  38. Umeta M, West C, Fufa H (2005) Content of zinc, iron, calcium and their absorption inhibitors in foods commonly consumed in Ethiopia. J Food Comp Anal 18:803–817CrossRefGoogle Scholar
  39. Welch R, Graham R (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364CrossRefGoogle Scholar
  40. Yun S, Habicht J, Miller DD et al (2004) An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenolic compounds on iron bioavailability in humans. J Nutr 134:2717–2721CrossRefGoogle Scholar
  41. Zimmermann MB, Chaouki N, Hurrell RF (2005) Iron deficiency due to consumption of a habitual diet low in bioavailable iron: a longitudinal cohort study in Moroccan children. Am J Clin Nutr 81:115–121CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Susan J. Whiting
    • 1
    Email author
  • Getenesh Berhanu
    • 1
  • Hiwot Abebe Haileslassie
    • 1
  • Carol J. Henry
    • 1
  1. 1.College of Pharmacy and NutritionUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations