Advertisement

Hypoxia and the Tumor Secretome

  • Ying Liu
  • Gabrielle E. Ciotti
  • T. S. Karin Eisinger-MathasonEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1136)

Abstract

Metastasis remains the leading cause of cancer-related deaths. To date, there are no specific treatments targeting disseminated disease. New therapeutic options will become available only if we enhance our understanding of mechanisms underlying metastatic spread. A large body of literature shows that the metastatic potential of tumor cells is strongly influenced by microenvironmental cues such as low oxygen (hypoxia). Clinically, hypoxia is a hallmark of most solid tumors and is associated with increased metastasis and poor survival in a variety of cancer types. Mechanistically, hypoxia influences multiple steps within the metastatic cascade and particularly impacts the interactions between tumor cells and host stroma at both primary and secondary sites. Here we review current evidence for a hypoxia-induced tumor secretome and its impact on metastatic progression. These studies have identified potential biomarkers and therapeutic targets that could be integrated into strategies for preventing and treating metastatic disease.

Keywords

Hypoxia Tumor microenvironment Metastasis Secretome Pro-survival Blood vessel formation Immune evasion Motility ECM remodeling Vascular permeability Premetastatic niche 

Notes

Acknowledgments

This work was supported by NIH Grant 1U54CA210173-01. We apologize to other researchers whose work we could not cite owing to space constraints.

References

  1. 1.
    Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Chenau J, Michelland S, Seve M (2008) Le sécrétome: définitions et intérêt biomédical. La Revue de Médecine Interne 29:606–608PubMedCrossRefGoogle Scholar
  3. 3.
    Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:867–867PubMedCrossRefGoogle Scholar
  4. 4.
    Ferro-Novick S, Brose N (2013) Traffic control system within cells. Nature 504:98–98PubMedCrossRefGoogle Scholar
  5. 5.
    Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25:364–372PubMedCrossRefGoogle Scholar
  6. 6.
    Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820:940–948PubMedCrossRefGoogle Scholar
  7. 7.
    Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51PubMedCrossRefGoogle Scholar
  8. 8.
    Dong H et al (2016) Breast Cancer MDA-MB-231 cells use secreted heat shock protein-90alpha (Hsp90α) to survive a hostile hypoxic environment. Sci Rep 6:20605PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ehrenfried JA, Herron BE, Townsend CM, Evers BM (1995) Heat shock proteins are differentially expressed in human gastrointestinal cancers. Surg Oncol 4:197–203PubMedCrossRefGoogle Scholar
  10. 10.
    Li CF et al (2008) Heat shock protein 90 overexpression independently predicts inferior disease-free survival with differential expression of the and isoforms in gastrointestinal stromal tumors. Clin Cancer Res 14:7822–7831PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gress TM et al (1994) Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res 54:547–551PubMedGoogle Scholar
  12. 12.
    Bao S et al (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5:329–339PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Song G et al (2009) Osteopontin promotes gastric cancer metastasis by augmenting cell survival and invasion through Akt-mediated HIF-1alpha up-regulation and MMP9 activation. J Cell Mol Med 13:1706–1718PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Song G et al (2008) Osteopontin promotes ovarian cancer progression and cell survival and increases HIF-1alpha expression through the PI3-K/Akt pathway. Cancer Sci 99:1901–1907PubMedGoogle Scholar
  15. 15.
    Xue M et al (2017) Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer 16:143PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Panigrahi GK et al (2018) Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Sci Rep 8:290CrossRefGoogle Scholar
  17. 17.
    Adair TH, Montani J-P (2010) Angiogenesis. In: Colloquium series on integrated systems physiology: from molecule to function, vol. 2, pp 1–84Google Scholar
  18. 18.
    Krock BL, Skuli N, Simon MC (2012) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2:1117–1133CrossRefGoogle Scholar
  19. 19.
    Li B et al (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20:1495–1497PubMedCrossRefGoogle Scholar
  20. 20.
    Compernolle V et al (2002) Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8:702–710PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Rankin EB et al (2008) Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice. Oncogene 27:5354–5358PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res 77:638–643PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Levy AP, Levy NS, Wegner S, Goldberg MA (1995) Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 270:13333–13340PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ceradini DJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Reynolds LP, Redmer DA (1998) Expression of the angiogenic factors, basic fibroblast growth factor and vascular endothelial growth factor, in the ovary. J Anim Sci 76:1671PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hong KH (2005) Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood 105:1405–1407PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Matsui J, Wakabayashi T, Asada M, Yoshimatsu K, Okada M (2004) Stem cell factor/c-kit signaling promotes the survival, migration, and capillary tube formation of human umbilical vein endothelial cells. J Biol Chem 279:18600–18607PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Han ZB et al (2008) Hypoxia-inducible factor (HIF)-1 directly enhances the transcriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF). Carcinogenesis 29:1853–1861PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sun L et al (2006) Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9:287–300PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Litz J (2006) Imatinib inhibits c-Kit-induced hypoxia-inducible factor-1 activity and vascular endothelial growth factor expression in small cell lung cancer cells. Mol Cancer Ther 5:1415–1422PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hellstrom M, Kalen M, Lindahl P et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055Google Scholar
  32. 32.
    Iivanainen E, Nelimarkka L, Elenius V et al (2003) Angiopoietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding EGF-like growth factor. FASEB J 17:1609–1621PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Murakami M (2012) Signaling required for blood vessel maintenance: molecular basis and pathological manifestations. Int J Vasc Med 2012:293641Google Scholar
  34. 34.
    Laderoute KR et al (2000) Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clin Cancer Res 6:2941–2950PubMedPubMedCentralGoogle Scholar
  35. 35.
    Umezu T et al (2014) Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 124:3748–3757PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hsu Y-L et al (2017) Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 36:4929–4942PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH (2013) Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem 288:34343–34351PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mao G et al (2015) Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis 18:373–382PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Wang R et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833PubMedCrossRefGoogle Scholar
  40. 40.
    Ricci-Vitiani L et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828PubMedCrossRefGoogle Scholar
  41. 41.
    Soda Y et al (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA 108:4274–4280PubMedCrossRefGoogle Scholar
  42. 42.
    Chen H-F et al (2014) Twist1 induces endothelial differentiation of tumour cells through the Jagged1-KLF4 axis. Nat Commun 5:4697PubMedCrossRefGoogle Scholar
  43. 43.
    Du R et al (2008) HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lin S et al (2012) Chemokine C-C motif receptor 5 and C-C motif ligand 5 promote cancer cell migration under hypoxia. Cancer Sci 103:904–912PubMedCrossRefGoogle Scholar
  45. 45.
    Leek RD et al (2000) Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol 190:430–436PubMedCrossRefGoogle Scholar
  46. 46.
    Grimshaw MJ, Wilson JL, Balkwill FR (2002) Endothelin-2 is a macrophage chemoattractant: implications for macrophage distribution in tumors. Eur J Immunol 32:2393–2400PubMedCrossRefGoogle Scholar
  47. 47.
    Grimshaw MJ (2007) Endothelins and hypoxia-inducible factor in cancer. Endocr Relat Cancer 14:233–244PubMedCrossRefGoogle Scholar
  48. 48.
    Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952PubMedCrossRefGoogle Scholar
  49. 49.
    Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989–999PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mantovani A (2010) The growing diversity and spectrum of action of myeloid-derived suppressor cells. Eur J Immunol 40:3317–3320PubMedCrossRefGoogle Scholar
  51. 51.
    Fridman WH et al (2011) Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 71:5601–5605PubMedCrossRefGoogle Scholar
  52. 52.
    Facciabene A et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475:226–230PubMedCrossRefGoogle Scholar
  53. 53.
    Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 13:5262–5270PubMedCrossRefGoogle Scholar
  54. 54.
    Hao N-B et al (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:948098–948011PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gabrilovich DI et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103PubMedCrossRefGoogle Scholar
  56. 56.
    Curiel TJ et al (2003) Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity. Nat Med 9:562–567PubMedCrossRefGoogle Scholar
  57. 57.
    Whiteside TL, Mandapathil M, Schuler P (2011) The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg). Curr Med Chem 18:5217–5223PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Yang L et al (2003) Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Investig 111:727–735PubMedCrossRefGoogle Scholar
  59. 59.
    Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68:5439–5449PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513PubMedCrossRefGoogle Scholar
  61. 61.
    Barsoum IB et al (2011) Hypoxia induces escape from innate immunity in Cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res 71:7433–7441CrossRefGoogle Scholar
  62. 62.
    Chen X et al (2017) Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep 38:522–528PubMedCrossRefGoogle Scholar
  63. 63.
    Wang X et al (2018) Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res 78(16):4586–4598.  https://doi.org/10.1158/0008-5472.CAN-17-3841CrossRefPubMedGoogle Scholar
  64. 64.
    Berchem G et al (2016) Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncoimmunology 5:e1062968PubMedCrossRefGoogle Scholar
  65. 65.
    Ye S-B et al (2016) Exosomal miR-24-3p impedes T-cell function by targeting FGF11and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. J Pathol 240:329–340PubMedCrossRefGoogle Scholar
  66. 66.
    Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374PubMedCrossRefGoogle Scholar
  67. 67.
    Sudhan DR, Siemann DW (2013) Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells. Clin Exp Metastasis 30:891–902PubMedCrossRefGoogle Scholar
  68. 68.
    Krishnamachary B et al (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63:1138–1143PubMedGoogle Scholar
  69. 69.
    Erler JT et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chen Y et al (2016) Lysyl hydroxylase 2 is secreted by tumor cells and can modify collagen in the extracellular space. J Biol Chem 291:25799–25808PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Eisinger-Mathason TSK et al (2013) Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov 3:1190–1205PubMedCrossRefGoogle Scholar
  72. 72.
    Gilkes DM et al (2013) Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol Cancer Res 11:456–466PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chaturvedi P, Gilkes DM, Takano N, Semenza GL (2014) Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc Natl Acad Sci 111:E2120–E2129PubMedCrossRefGoogle Scholar
  74. 74.
    Chaturvedi P et al (2013) Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest 123:189–205PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Haemmerle M et al (2016) FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest 126:1885–1896PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Díaz B, Yuen A, Iizuka S, Higashiyama S, Courtneidge SA (2013) Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia. J Cell Biol 201:279–292PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ramteke A et al (2015) Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog 54:554–565PubMedCrossRefGoogle Scholar
  78. 78.
    Li L et al (2016) Exosomes derived from hypoxic Oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a Prometastatic phenotype. Cancer Res 76:1770–1780CrossRefGoogle Scholar
  79. 79.
    Fidler IJ (1970) Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45:773–782PubMedGoogle Scholar
  80. 80.
    Zucchella M et al (1989) Human tumor cells cultured ‘in vitro’ activate platelet function by producing ADP or thrombin. Haematologica 74:541–545PubMedGoogle Scholar
  81. 81.
    Bastida E, Ordinas A, Giardina SL, Jamieson GA (1982) Differentiation of platelet-aggregating effects of human tumor cell lines based on inhibition studies with apyrase, hirudin, and phospholipase. Cancer Res 42:4348–4352PubMedGoogle Scholar
  82. 82.
    Pinto S et al (1993) Increased thromboxane A2 production at primary tumor site in metastasizing squamous cell carcinoma of the larynx. Prostaglandins Leukot Essent Fatty Acids 49:527–530PubMedCrossRefGoogle Scholar
  83. 83.
    Monteiro RQ et al (2016) Hypoxia regulates the expression of tissue factor pathway signaling elements in a rat glioma model. Oncol Lett 12:315–322PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Gong L, Cai Y, Zhou X, Yang H (2012) Activated platelets interact with lung cancer cells through P-selectin glycoprotein ligand-1. Pathol Oncol Res 18:989–996PubMedCrossRefGoogle Scholar
  85. 85.
    Nieswandt B, Hafner M, Echtenacher B, Männel DN (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59:1295–1300PubMedGoogle Scholar
  86. 86.
    Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11:123–134PubMedCrossRefGoogle Scholar
  87. 87.
    Palumbo JS, Degen JL (2007) Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thromb Res 120(Suppl 2):S22–S28PubMedCrossRefGoogle Scholar
  88. 88.
    Kopp H-G, Placke T, Salih HR (2009) Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 69:7775–7783PubMedCrossRefGoogle Scholar
  89. 89.
    Labelle M, Hynes RO (2012) The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during Hematogenous dissemination. Cancer Discov 2:1091–1099PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Placke T et al (2012) Platelet-derived MHC class I confers a Pseudonormal phenotype to Cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res 72:440–448PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Granot Z et al (2011) Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20:300–314PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Reymond N, d'Água BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13:858–870PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Zhang H et al (2011) HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 31:1757–1770PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Gupta GP et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Wolf MJ et al (2012) Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 22:91–105PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Weis S, Cui J, Barnes L, Cheresh D (2004) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167:223–229PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Huang Y et al (2009) Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res 69:7529–7537PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S (2013) Platelet-derived nucleotides promote tumor-cell Transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24:130–137PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Lee E et al (2014) Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun 5:112CrossRefGoogle Scholar
  101. 101.
    Cox TR et al (2015) The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522:106–110PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Wong CCL et al (2014) Lysyl oxidase-like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma. Hepatology 60:1645–1658PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Manisterski M, Golan M, Amir S, Weisman Y, Mabjeesh N (2014) Hypoxia induces PTHrP gene transcription in human cancer cells through the HIF-2α. Cell Cycle 9:3747–3753CrossRefGoogle Scholar
  104. 104.
    Guise TA et al (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Investig 98:1544–1549PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Mazzieri R et al (2011) Targeting the ANG2/TIE2 Axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19:512–526PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Oskarsson T et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17:867–874PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Loo JM et al (2015) Extracellular metabolic energetics can promote cancer progression. Cell 160:393–406PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science 352:175–180PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ying Liu
    • 1
  • Gabrielle E. Ciotti
    • 1
  • T. S. Karin Eisinger-Mathason
    • 1
    Email author
  1. 1.The Abramson Family Cancer Research Institute, Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA

Personalised recommendations