Hypoxia Mediates Tumor Malignancy and Therapy Resistance

  • Weibo LuoEmail author
  • Yingfei WangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1136)


Hypoxia is a hallmark of the tumor microenvironment and contributes to tumor malignant phenotypes. Hypoxia-inducible factor (HIF) is a master regulator of intratumoral hypoxia and controls hypoxia-mediated pathological processes in tumors, including angiogenesis, metabolic reprogramming, epigenetic reprogramming, immune evasion, pH homeostasis, cell migration/invasion, stem cell pluripotency, and therapy resistance. In this book chapter, we reviewed the causes and types of intratumoral hypoxia, hypoxia detection methods, and the oncogenic role of HIF in tumorigenesis and chemo- and radio-therapy resistance.


Angiogenesis Cell motility Epigenetics HIF Hypoxia Hypoxia imaging Metabolism Stem cell Therapy resistance Tumorigenesis 



Work in authors’ laboratories was supported by grants from NIH (R00CA168746), CPRIT (RR140036), Susan G. Komen® (CCR16376227), Welch Foundation (I-1903-20160319), and American Cancer Society and UTSW Simmons Cancer Center (ACS-IRG-02-196) to W.L.; and NIH (R00NS078049, R35GM124693), Welch Foundation (I-1939-20170325), CPRIT (RP170671), Darrell K Royal Research Fund, TIBIR pilot grant, and UTSW startup funds to Y.W.. W.L. is a CPRIT Scholar in Cancer Research.


  1. 1.
    Abbott BD, Buckalew AR (2000) Placental defects in ARNT-knockout conceptus correlate with localized decreases in VEGF-R2, Ang-1, and Tie-2. Dev Dyn 219(4):526–538.<::AID-DVDY1080>3.0.CO;2-N PubMedCrossRefGoogle Scholar
  2. 2.
    Abdulmalek K, Ashur F, Ezer N, Ye F, Magder S, Hussain SN (2001) Differential expression of Tie-2 receptors and angiopoietins in response to in vivo hypoxia in rats. Am J Physiol Lung Cell Mol Physiol 281(3):L582–L590. PubMedCrossRefGoogle Scholar
  3. 3.
    Alahari S, Post M, Caniggia I (2015) Jumonji domain containing protein 6: a novel oxygen sensor in the human placenta. Endocrinology 156(8):3012–3025. PubMedCrossRefGoogle Scholar
  4. 4.
    Ali MS, Kong FL, Rollo A, Mendez R, Kohanim S, Smith DL, Yang DJ (2012) Development of (99m)Tc-N4-NIM for molecular imaging of tumor hypoxia. J Biomed Biotechnol 2012:828139. PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007) New nomenclature for chromatin-modifying enzymes. Cell 131(4):633–636. PubMedCrossRefGoogle Scholar
  6. 6.
    Arteel GE, Thurman RG, Yates JM, Raleigh JA (1995) Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. Br J Cancer 72(4):889–895PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Awwad HK, El Merzabani MM, El Badawy S, Ezzat S, Akoush H, Abd El Moneim H, Saiid A, Soliman O, Khafagy M, Burgers MV (1980) Misonidazole in the preoperative and radical radiotherapy of bladder cancer. Cancer Clin Trials 3(3):275–280PubMedGoogle Scholar
  8. 8.
    Bane O, Besa C, Wagner M, Oesingmann N, Zhu H, Fiel MI, Taouli B (2016) Feasibility and reproducibility of BOLD and TOLD measurements in the liver with oxygen and carbogen gas challenge in healthy volunteers and patients with hepatocellular carcinoma. J Magn Reson Imaging 43(4):866–876. PubMedCrossRefGoogle Scholar
  9. 9.
    Bao L, Chen Y, Lai HT, Wu SY, Wang JE, Hatanpaa KJ, Raisanen JM, Fontenot M, Lega B, Chiang CM, Semenza GL, Wang Y, Luo W (2018) Methylation of hypoxia-inducible factor (HIF)-1alpha by G9a/GLP inhibits HIF-1 transcriptional activity and cell migration. Nucleic Acids Res 46(13):6576–6591. PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. PubMedCrossRefGoogle Scholar
  11. 11.
    Basu S, Alavi A (2009) Molecular imaging (PET) of brain tumors. Neuroimaging Clin N Am 19(4):625–646. PubMedCrossRefGoogle Scholar
  12. 12.
    Batie M, Druker J, D’Ignazio L, Rocha S (2017) KDM2 family members are regulated by HIF-1 in hypoxia. Cells 6(1):8. PubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bayer C, Vaupel P (2012) Acute versus chronic hypoxia in tumors: controversial data concerning time frames and biological consequences. Strahlenther Onkol 188(7):616–627. PubMedCrossRefGoogle Scholar
  14. 14.
    Becker A, Hansgen G, Bloching M, Weigel C, Lautenschlager C, Dunst J (1998) Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys 42(1):35–41CrossRefGoogle Scholar
  15. 15.
    Bencokova Z, Kaufmann MR, Pires IM, Lecane PS, Giaccia AJ, Hammond EM (2009) ATM activation and signaling under hypoxic conditions. Mol Cell Biol 29(2):526–537. PubMedCrossRefGoogle Scholar
  16. 16.
    Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22(16):4082–4090Google Scholar
  17. 17.
    Brauchle M, Yao Z, Arora R, Thigale S, Clay I, Inverardi B, Fletcher J, Taslimi P, Acker MG, Gerrits B, Voshol J, Bauer A, Schubeler D, Bouwmeester T, Ruffner H (2013) Protein complex interactor analysis and differential activity of KDM3 subfamily members towards H3K9 methylation. PLoS One 8(4):e60549. PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51(2):349–353PubMedCrossRefGoogle Scholar
  19. 19.
    Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4(6):437–447. PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Calvani M, Rapisarda A, Uranchimeg B, Shoemaker RH, Melillo G (2006) Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood 107(7):2705–2712. PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cao Y, Eble JM, Moon E, Yuan H, Weitzel DH, Landon CD, Nien CY, Hanna G, Rich JN, Provenzale JM, Dewhirst MW (2013) Tumor cells upregulate normoxic HIF-1alpha in response to doxorubicin. Cancer Res 73(20):6230–6242. PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Casciello F, Al-Ejeh F, Kelly G, Brennan DJ, Ngiow SF, Young A, Stoll T, Windloch K, Hill MM, Smyth MJ, Gannon F, Lee JS (2017) G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proc Natl Acad Sci U S A 114(27):7077–7082. PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95(20):11715–11720PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chang B, Chen Y, Zhao Y, Bruick RK (2007) JMJD6 is a histone arginine demethylase. Science 318(5849):444–447. PubMedCrossRefGoogle Scholar
  25. 25.
    Chang L, Zhou B, Hu S, Guo R, Liu X, Jones SN, Yen Y (2008) ATM-mediated serine 72 phosphorylation stabilizes ribonucleotide reductase small subunit p53R2 protein against MDM2 to DNA damage. Proc Natl Acad Sci U S A 105(47):18519–18524. PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Chang S, Park B, Choi K, Moon Y, Lee HY, Park H (2016) Hypoxic reprograming of H3K27me3 and H3K4me3 at the INK4A locus. FEBS Lett 590(19):3407–3415. PubMedCrossRefGoogle Scholar
  27. 27.
    Chang YC, Chan YC, Chang WM, Lin YF, Yang CJ, Su CY, Huang MS, Wu ATH, Hsiao M (2017) Feedback regulation of ALDOA activates the HIF-1alpha/MMP9 axis to promote lung cancer progression. Cancer Lett 403:28–36. PubMedCrossRefGoogle Scholar
  28. 28.
    Chen A, Sceneay J, Godde N, Kinwel T, Ham S, Thompson EW, Humbert PO, Moller A (2018) Intermittent hypoxia induces a metastatic phenotype in breast cancer. Oncogene 37(31):4214–4225. PubMedCrossRefGoogle Scholar
  29. 29.
    Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M (2006) Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res 66(18):9009–9016. PubMedCrossRefGoogle Scholar
  30. 30.
    Chen J, Ding Z, Peng Y, Pan F, Li J, Zou L, Zhang Y, Liang H (2014) HIF-1alpha inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein. PLoS One 9(6):e98882. PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Chen Y, Wang Y, Luo W (2018) ZMYND8 is a primary HIF coactivator that mediates breast cancer progression. Mol Cell Oncol 5(4):e1479619. PubMedCrossRefGoogle Scholar
  32. 32.
    Chen Y, Zhang B, Bao L, Jin L, Yang M, Peng Y, Kumar A, Wang JE, Wang C, Zou X, Xing C, Wang Y, Luo W (2018) ZMYND8 acetylation mediates HIF-dependent breast cancer progression and metastasis. J Clin Invest 128(5):1937–1955. PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cheng J, Lei L, Xu J, Sun Y, Zhang Y, Wang X, Pan L, Shao Z, Zhang Y, Liu G (2013) 18F-fluoromisonidazole PET/CT: a potential tool for predicting primary endocrine therapy resistance in breast cancer. J Nucl Med 54(3):333–340. PubMedCrossRefGoogle Scholar
  34. 34.
    Chung JK, Chang YS, Lee YJ, Kim YJ, Jeong JM, Lee DS, Jang JJ, Lee MC (1999) The effect of tumor size on F-18-labeled fluorodeoxyglucose and fluoroerythronitroimidazole uptake in a murine sarcoma model. Ann Nucl Med 13(5):303–308PubMedCrossRefGoogle Scholar
  35. 35.
    Colliez F, Gallez B, Jordan BF (2017) Assessing tumor oxygenation for predicting outcome in radiation oncology: a review of studies correlating tumor hypoxic status and outcome in the preclinical and clinical settings. Front Oncol 7:10. PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Collingridge DR, Young WK, Vojnovic B, Wardman P, Lynch EM, Hill SA, Chaplin DJ (1997) Measurement of tumor oxygenation: a comparison between polarographic needle electrodes and a time-resolved luminescence-based optical sensor. Radiat Res 147(3):329–334PubMedCrossRefGoogle Scholar
  37. 37.
    Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62(12):3387–3394Google Scholar
  38. 38.
    Courtney KD, Infante JR, Lam ET, Figlin RA, Rini BI, Brugarolas J, Zojwalla NJ, Lowe AM, Wang K, Wallace EM, Josey JA, Choueiri TK (2018) Phase I Dose-Escalation Trial of PT2385, a first-in-class hypoxia-inducible factor-2alpha antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J Clin Oncol 36(9):867–874. PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Crabtree HG, Cramer W (1933) The action of radium on cancer cells II. Some factors determining the susceptibility of cancer cells to radium. Proc R Soc B 113(782):238–250. CrossRefGoogle Scholar
  40. 40.
    Dearling JL, Packard AB (2010) Some thoughts on the mechanism of cellular trapping of Cu(II)-ATSM. Nucl Med Biol 37(3):237–243. PubMedCrossRefGoogle Scholar
  41. 41.
    Dehdashti F, Grigsby PW, Mintun MA, Lewis JS, Siegel BA, Welch MJ (2003) Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response-a preliminary report. Int J Radiat Oncol Biol Phys 55(5):1233–1238PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350(Pt 1):219–227PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Drew PJ, Chatterjee S, Turnbull LW, Read J, Carleton PJ, Fox JN, Monson JR, Kerin MJ (1999) Dynamic contrast enhanced magnetic resonance imaging of the breast is superior to triple assessment for the pre-operative detection of multifocal breast cancer. Ann Surg Oncol 6(6):599–603PubMedCrossRefGoogle Scholar
  44. 44.
    Dudley AC (2012) Tumor endothelial cells. Cold Spring Harb Perspect Med 2(3):a006536. PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, Li H, Huet G, Yuan Q, Wigal T, Butt Y, Ni M, Torrealba J, Oliver D, Lenkinski RE, Malloy CR, Wachsmann JW, Young JD, Kernstine K, DeBerardinis RJ (2017) Lactate metabolism in human lung tumors. Cell 171(2):358–371 e359. CrossRefGoogle Scholar
  46. 46.
    Feng H, Wang J, Chen W, Shan B, Guo Y, Xu J, Wang L, Guo P, Zhang Y (2016) Hypoxia-induced autophagy as an additional mechanism in human osteosarcoma radioresistance. J Bone Oncol 5(2):67–73. PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16(9):4604–4613PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Foskolou IP, Jorgensen C, Leszczynska KB, Olcina MM, Tarhonskaya H, Haisma B, D’Angiolella V, Myers WK, Domene C, Flashman E, Hammond EM (2017) Ribonucleotide reductase requires subunit switching in hypoxia to maintain DNA replication. Mol Cell 66(2):206–220 e209. CrossRefGoogle Scholar
  49. 49.
    Fu L, Chen L, Yang J, Ye T, Chen Y, Fang J (2012) HIF-1alpha-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism. Carcinogenesis 33(9):1664–1673. PubMedCrossRefGoogle Scholar
  50. 50.
    Giatromanolaki A, Bates GJ, Koukourakis MI, Sivridis E, Gatter KC, Harris AL, Banham AH (2008) The presence of tumor-infiltrating FOXP3+ lymphocytes correlates with intratumoral angiogenesis in endometrial cancer. Gynecol Oncol 110(2):216–221. PubMedCrossRefGoogle Scholar
  51. 51.
    Grassi I, Nanni C, Cicoria G, Blasi C, Bunkheila F, Lopci E, Colletti PM, Rubello D, Fanti S (2014) Usefulness of 64Cu-ATSM in head and neck cancer: a preliminary prospective study. Clin Nucl Med 39(1):e59–e63. PubMedCrossRefGoogle Scholar
  52. 52.
    Graves EE, Hicks RJ, Binns D, Bressel M, Le QT, Peters L, Young RJ, Rischin D (2016) Quantitative and qualitative analysis of [(18)F]FDG and [(18)F]FAZA positron emission tomography of head and neck cancers and associations with HPV status and treatment outcome. Eur J Nucl Med Mol Imaging 43(4):617–625. PubMedCrossRefGoogle Scholar
  53. 53.
    Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7(3):205–213PubMedGoogle Scholar
  54. 54.
    Guo X, Tian Z, Wang X, Pan S, Huang W, Shen Y, Gui Y, Duan X, Cai Z (2015) Regulation of histone demethylase KDM6B by hypoxia-inducible factor-2alpha. Acta Biochim Biophys Sin (Shanghai) 47(2):106–113. CrossRefGoogle Scholar
  55. 55.
    Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ (2002) Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 22(6):1834–1843PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Harada H, Inoue M, Itasaka S, Hirota K, Morinibu A, Shinomiya K, Zeng L, Ou G, Zhu Y, Yoshimura M, McKenna WG, Muschel RJ, Hiraoka M (2012) Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate towards tumour blood vessels. Nat Commun 3:783. PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    He F, Deng X, Wen B, Liu Y, Sun X, Xing L, Minami A, Huang Y, Chen Q, Zanzonico PB, Ling CC, Li GC (2008) Noninvasive molecular imaging of hypoxia in human xenografts: comparing hypoxia-induced gene expression with endogenous and exogenous hypoxia markers. Cancer Res 68(20):8597–8606. PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    He WS, Dai XF, Jin M, Liu CW, Rent JH (2012) Hypoxia-induced autophagy confers resistance of breast cancer cells to ionizing radiation. Oncol Res 20(5–6):251–258CrossRefGoogle Scholar
  59. 59.
    Heiden BT, Chen G, Hermann M, Brown RKJ, Orringer MB, Lin J, Chang AC, Carrott PW, Lynch WR, Zhao L, Beer DG, Reddy RM (2018) 18F-FDG PET intensity correlates with a hypoxic gene signature and other oncogenic abnormalities in operable non-small cell lung cancer. PLoS One 13(7):e0199970. PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Heijmen L, de Geus-Oei LF, de Wilt JH, Visvikis D, Hatt M, Visser EP, Bussink J, Punt CJ, Oyen WJ, van Laarhoven HW (2012) Reproducibility of functional volume and activity concentration in 18F-FDG PET/CT of liver metastases in colorectal cancer. Eur J Nucl Med Mol Imaging 39(12):1858–1867. PubMedCrossRefGoogle Scholar
  61. 61.
    Hill SA, Chaplin DJ (1996) Detection of microregional fluctuations in erythrocyte flow using laser Doppler microprobes. Adv Exp Med Biol 388:367–371PubMedCrossRefGoogle Scholar
  62. 62.
    Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H (2002) Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 46(10):2587–2597. PubMedCrossRefGoogle Scholar
  63. 63.
    Hoeben BA, Kaanders JH, Franssen GM, Troost EG, Rijken PF, Oosterwijk E, van Dongen GA, Oyen WJ, Boerman OC, Bussink J (2010) PET of hypoxia with 89Zr-labeled cG250-F(ab′)2 in head and neck tumors. J Nucl Med 51(7):1076–1083. PubMedCrossRefGoogle Scholar
  64. 64.
    Holland JP, Lewis JS, Dehdashti F (2009) Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Imaging 53(2):193–200PubMedPubMedCentralGoogle Scholar
  65. 65.
    Hugonnet F, Fournier L, Medioni J, Smadja C, Hindie E, Huchet V, Itti E, Cuenod CA, Chatellier G, Oudard S, Faraggi M, Hypoxia in Renal Cancer Multicenter G (2011) Metastatic renal cell carcinoma: relationship between initial metastasis hypoxia, change after 1 month’s sunitinib, and therapeutic response: an 18F-fluoromisonidazole PET/CT study. J Nucl Med 52(7):1048–1055. PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468. PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12(2):149–162CrossRefGoogle Scholar
  68. 68.
    Jeong YJ, Jung JW, Cho YY, Park SH, Oh HK, Kang S (2017) Correlation of hypoxia inducible transcription factor in breast cancer and SUVmax of F-18 FDG PET/CT. Nucl Med Rev Cent East Eur 20(1):32–38. PubMedCrossRefGoogle Scholar
  69. 69.
    Johnson AB, Denko N, Barton MC (2008) Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res 640(1–2):174–179. PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kaneta T, Takai Y, Iwata R, Hakamatsuka T, Yasuda H, Nakayama K, Ishikawa Y, Watanuki S, Furumoto S, Funaki Y, Nakata E, Jingu K, Tsujitani M, Ito M, Fukuda H, Takahashi S, Yamada S (2007) Initial evaluation of dynamic human imaging using 18F-FRP170 as a new PET tracer for imaging hypoxia. Ann Nucl Med 21(2):101–107PubMedCrossRefGoogle Scholar
  71. 71.
    Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, Rowan A, Yan Z, Campochiaro PA, Semenza GL (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93(11):1074–1081. CrossRefGoogle Scholar
  72. 72.
    Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185. PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kim SM, Kim JY, Choe NW, Cho IH, Kim JR, Kim DW, Seol JE, Lee SE, Kook H, Nam KI, Kook H, Bhak YY, Seo SB (2010) Regulation of mouse steroidogenesis by WHISTLE and JMJD1C through histone methylation balance. Nucleic Acids Res 38(19):6389–6403. PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kimura H, Braun RD, Ong ET, Hsu R, Secomb TW, Papahadjopoulos D, Hong K, Dewhirst MW (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56(23):5522–5528Google Scholar
  75. 75.
    Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120(3):694–705. PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Koh WJ, Bergman KS, Rasey JS, Peterson LM, Evans ML, Graham MM, Grierson JR, Lindsley KL, Lewellen TK, Krohn KA et al (1995) Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys 33(2):391–398. PubMedCrossRefGoogle Scholar
  77. 77.
    Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48(4):919–922PubMedCrossRefGoogle Scholar
  78. 78.
    Kotch LE, Iyer NV, Laughner E, Semenza GL (1999) Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209(2):254–267. PubMedCrossRefGoogle Scholar
  79. 79.
    Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ (2010) Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol 30(1):344–353. PubMedCrossRefGoogle Scholar
  80. 80.
    Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2(12):1117–1133. PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lee HY, Choi K, Oh H, Park YK, Park H (2014) HIF-1-dependent induction of Jumonji domain-containing protein (JMJD) 3 under hypoxic conditions. Mol Cells 37(1):43–50. PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Lee JS, Kim Y, Kim IS, Kim B, Choi HJ, Lee JM, Shin HJ, Kim JH, Kim JY, Seo SB, Lee H, Binda O, Gozani O, Semenza GL, Kim M, Kim KI, Hwang D, Baek SH (2010) Negative regulation of hypoxic responses via induced Reptin methylation. Mol Cell 39(1):71–85. PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Li B, Qiu B, Lee DS, Walton ZE, Ochocki JD, Mathew LK, Mancuso A, Gade TP, Keith B, Nissim I, Simon MC (2014) Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513(7517):251–255. PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D (2010) Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 24(4):368–380. PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Liu G, Bollig-Fischer A, Kreike B, van de Vijver MJ, Abrams J, Ethier SP, Yang ZQ (2009) Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene 28(50):4491–4500PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Liu L, Ning X, Sun L, Zhang H, Shi Y, Guo C, Han S, Liu J, Sun S, Han Z, Wu K, Fan D (2008) Hypoxia-inducible factor-1 alpha contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci 99(1):121–128. PubMedCrossRefGoogle Scholar
  87. 87.
    Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ (2008) Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem 283(42):28106–28114. PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lu H, Chen I, Shimoda LA, Park Y, Zhang C, Tran L, Zhang H, Semenza GL (2017) Chemotherapy-induced Ca2+ release stimulates breast cancer stem cell enrichment. Cell Rep 18(8):1946–1957. PubMedCrossRefGoogle Scholar
  89. 89.
    Luo W, Chang R, Zhong J, Pandey A, Semenza GL (2012) Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci U S A 109(49):E3367–E3376. PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A, Semenza GL (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145(5):732–744. PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Luo W, Wang Y (2018) Epigenetic regulators: multifunctional proteins modulating hypoxia-inducible factor-alpha protein stability and activity. Cell Mol Life Sci 75(6):1043–1056. PubMedCrossRefGoogle Scholar
  92. 92.
    Mahy P, De Bast M, Gillart J, Labar D, Gregoire V (2006) Detection of tumour hypoxia: comparison between EF5 adducts and [18F]EF3 uptake on an individual mouse tumour basis. Eur J Nucl Med Mol Imaging 33(5):553–556. PubMedCrossRefGoogle Scholar
  93. 93.
    Maina PK, Shao P, Jia X, Liu Q, Umesalma S, Marin M, Long D Jr, Concepcion-Roman S, Qi HH (2017) Histone demethylase PHF8 regulates hypoxia signaling through HIF1alpha and H3K4me3. Biochim Biophys Acta Gene Regul Mech 1860(9):1002–1012. PubMedCrossRefGoogle Scholar
  94. 94.
    Malec V, Gottschald OR, Li S, Rose F, Seeger W, Hanze J (2010) HIF-1 alpha signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free Radic Biol Med 48(12):1626–1635. PubMedCrossRefGoogle Scholar
  95. 95.
    Maltepe E, Schmidt JV, Baunoch D, Bradfield CA, Simon MC (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386(6623):403–407. PubMedCrossRefGoogle Scholar
  96. 96.
    Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG, Semenza GL (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105(2):659–669. PubMedCrossRefGoogle Scholar
  97. 97.
    Martinive P, Defresne F, Quaghebeur E, Daneau G, Crokart N, Gregoire V, Gallez B, Dessy C, Feron O (2009) Impact of cyclic hypoxia on HIF-1alpha regulation in endothelial cells--new insights for anti-tumor treatments. FEBS J 276(2):509–518. PubMedCrossRefGoogle Scholar
  98. 98.
    Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275CrossRefGoogle Scholar
  99. 99.
    Maynard MA, Evans AJ, Shi W, Kim WY, Liu FF, Ohh M (2007) Dominant-negative HIF-3 alpha 4 suppresses VHL-null renal cell carcinoma progression. Cell Cycle 6(22):2810–2816. PubMedCrossRefGoogle Scholar
  100. 100.
    Mendenhall WM, Morris CG, Amdur RJ, Mendenhall NP, Siemann DW (2005) Radiotherapy alone or combined with carbogen breathing for squamous cell carcinoma of the head and neck: a prospective, randomized trial. Cancer 104(2):332–337. PubMedCrossRefGoogle Scholar
  101. 101.
    Mendichovszky I, Jackson A (2011) Imaging hypoxia in gliomas. Br J Radiol 84 Spec No 2(2):S145–S158. PubMedCrossRefGoogle Scholar
  102. 102.
    Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384. PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Michiels C, Tellier C, Feron O (2016) Cycling hypoxia: a key feature of the tumor microenvironment. Biochim Biophys Acta 1866(1):76–86. PubMedCrossRefGoogle Scholar
  104. 104.
    Mimura I, Nangaku M, Kanki Y, Tsutsumi S, Inoue T, Kohro T, Yamamoto S, Fujita T, Shimamura T, Suehiro J, Taguchi A, Kobayashi M, Tanimura K, Inagaki T, Tanaka T, Hamakubo T, Sakai J, Aburatani H, Kodama T, Wada Y (2012) Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol 32(15):3018–3032. PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Moulder JE, Rockwell S (1984) Hypoxic fractions of solid tumors: experimental techniques, methods of analysis, and a survey of existing data. Int J Radiat Oncol Biol Phys 10(5):695–712PubMedCrossRefGoogle Scholar
  107. 107.
    Nakaigawa N, Kondo K, Ueno D, Namura K, Makiyama K, Kobayashi K, Shioi K, Ikeda I, Kishida T, Kaneta T, Minamimoto R, Tateishi U, Inoue T, Yao M (2017) The acceleration of glucose accumulation in renal cell carcinoma assessed by FDG PET/CT demonstrated acquisition of resistance to tyrosine kinase inhibitor therapy. BMC Cancer 17(1):39. PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Newman HF, Bleehen NM, Workman P (1986) A phase I study of the combination of two hypoxic cell radiosensitizers, Ro 03-8799 and SR-2508: toxicity and pharmacokinetics. Int J Radiat Oncol Biol Phys 12(7):1113–1116PubMedCrossRefGoogle Scholar
  109. 109.
    Nilsson I, Shibuya M, Wennstrom S (2004) Differential activation of vascular genes by hypoxia in primary endothelial cells. Exp Cell Res 299(2):476–485. PubMedCrossRefGoogle Scholar
  110. 110.
    O’Connor J, Robinson S, Waterton J (2018) Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI. Br J Radiol 92:20180642. CrossRefGoogle Scholar
  111. 111.
    Overgaard J (2007) Hypoxic radiosensitization: adored and ignored. J Clin Oncol 25(26):4066–4074. CrossRefGoogle Scholar
  112. 112.
    Overgaard J, Hansen HS, Overgaard M, Bastholt L, Berthelsen A, Specht L, Lindelov B, Jorgensen K (1998) A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother Oncol 46(2):135–146PubMedCrossRefGoogle Scholar
  113. 113.
    Parliament MB, Chapman JD, Urtasun RC, McEwan AJ, Golberg L, Mercer JR, Mannan RH, Wiebe LI (1992) Non-invasive assessment of human tumour hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study. Br J Cancer 65(1):90–95PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, Wester HJ, Beck R, McEwan AJ, Wiebe LI, Schwaiger M (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46(1):106–113PubMedGoogle Scholar
  115. 115.
    Pigott KH, Hill SA, Chaplin DJ, Saunders MI (1996) Microregional fluctuations in perfusion within human tumours detected using laser Doppler flowmetry. Radiother Oncol 40(1):45–50PubMedCrossRefGoogle Scholar
  116. 116.
    Polanski R, Hodgkinson CL, Fusi A, Nonaka D, Priest L, Kelly P, Trapani F, Bishop PW, White A, Critchlow SE, Smith PD, Blackhall F, Dive C, Morrow CJ (2014) Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res 20(4):926–937. PubMedCrossRefGoogle Scholar
  117. 117.
    Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ, Ratcliffe PJ (2008) Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 416(3):387–394. PubMedCrossRefGoogle Scholar
  118. 118.
    Rampling R, Cruickshank G, Lewis AD, Fitzsimmons SA, Workman P (1994) Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int J Radiat Oncol Biol Phys 29(3):427–431CrossRefGoogle Scholar
  119. 119.
    Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM, Krohn KA (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36(2):417–428PubMedCrossRefGoogle Scholar
  120. 120.
    Riedl CC, Brader P, Zanzonico PB, Chun YS, Woo Y, Singh P, Carlin S, Wen B, Ling CC, Hricak H, Fong Y (2008) Imaging hypoxia in orthotopic rat liver tumors with iodine 124-labeled iodoazomycin galactopyranoside PET. Radiology 248(2):561–570. PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT (2009) Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med 9(4):442–458PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Roels S, Slagmolen P, Nuyts J, Lee JA, Loeckx D, Maes F, Stroobants S, Penninckx F, Haustermans K (2008) Biological image-guided radiotherapy in rectal cancer: is there a role for FMISO or FLT, next to FDG? Acta Oncol 47(7):1237–1248. PubMedCrossRefGoogle Scholar
  123. 123.
    Rofstad EK, Gaustad JV, Egeland TA, Mathiesen B, Galappathi K (2010) Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int J Cancer 127(7):1535–1546. PubMedCrossRefGoogle Scholar
  124. 124.
    Roskoski R Jr (2017) Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res 120:116–132. PubMedCrossRefGoogle Scholar
  125. 125.
    Russell J, Carlin S, Burke SA, Wen B, Yang KM, Ling CC (2009) Immunohistochemical detection of changes in tumor hypoxia. Int J Radiat Oncol Biol Phys 73(4):1177–1186. PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL (2014) Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci U S A 111(50):E5429–E5438. PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Schito L, Rey S, Tafani M, Zhang H, Wong CC, Russo A, Russo MA, Semenza GL (2012) Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc Natl Acad Sci U S A 109(40):E2707–E2716. PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Segard T, Robins PD, Yusoff IF, Ee H, Morandeau L, Campbell EM, Francis RJ (2013) Detection of hypoxia with 18F-fluoromisonidazole (18F-FMISO) PET/CT in suspected or proven pancreatic cancer. Clin Nucl Med 38(1):1–6. PubMedCrossRefGoogle Scholar
  129. 129.
    Semenza GL (2007) HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr 39(3):231–234PubMedCrossRefGoogle Scholar
  130. 130.
    Semenza GL (2007) Life with oxygen. Science 318(5847):62–64PubMedCrossRefGoogle Scholar
  131. 131.
    Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634CrossRefGoogle Scholar
  132. 132.
    Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271(51):32529–32537PubMedCrossRefGoogle Scholar
  134. 134.
    Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269(38):23757–23763PubMedGoogle Scholar
  135. 135.
    Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12(12):5447–5454PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25(1):1–14PubMedCrossRefGoogle Scholar
  137. 137.
    Shin DH, Dier U, Melendez JA, Hempel N (2015) Regulation of MMP-1 expression in response to hypoxia is dependent on the intracellular redox status of metastatic bladder cancer cells. Biochim Biophys Acta 1852(12):2593–2602. PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, Oster ZH, Sacker DF, Shiue CY, Turner H, Wan CN, Wolf AP, Zabinski SV (1980) A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 21(7):670–675PubMedGoogle Scholar
  139. 139.
    Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118(12):3930–3942. PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Squatrito M, Brennan CW, Helmy K, Huse JT, Petrini JH, Holland EC (2010) Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18(6):619–629. PubMedCrossRefGoogle Scholar
  141. 141.
    Sun JC, He F, Yi W, Wan MH, Li R, Wei X, Wu R, Niu DL (2015) High expression of HIF-2alpha and its anti-radiotherapy effect in lung cancer stem cells. Genet Mol Res 14(4):18110–18120. PubMedCrossRefGoogle Scholar
  142. 142.
    Sun RC, Denko NC (2014) Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19(2):285–292. PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Sun Y, Guan Z, Liang L, Cheng Y, Zhou J, Li J, Xu Y (2016) HIF-1alpha/MDR1 pathway confers chemoresistance to cisplatin in bladder cancer. Oncol Rep 35(3):1549–1556. PubMedCrossRefGoogle Scholar
  144. 144.
    Takahashi N, Fujibayashi Y, Yonekura Y, Welch MJ, Waki A, Tsuchida T, Sadato N, Sugimoto K, Itoh H (2000) Evaluation of 62Cu labeled diacetyl-bis(N4-methylthiosemicarbazone) as a hypoxic tissue tracer in patients with lung cancer. Ann Nucl Med 14(5):323–328PubMedCrossRefGoogle Scholar
  145. 145.
    Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y, Nakamura Y (2000) A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404(6773):42–49. PubMedCrossRefGoogle Scholar
  146. 146.
    Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9(4):539–549PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11(1):72–82PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Tong D, Liu Q, Liu G, Yuan W, Wang L, Guo Y, Lan W, Zhang D, Dong S, Wang Y, Xiao H, Mu J, Mao C, Wong J, Jiang J (2016) The HIF/PHF8/AR axis promotes prostate cancer progression. Oncogenesis 5(12):e283. PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Valk PE, Mathis CA, Prados MD, Gilbert JC, Budinger TF (1992) Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 33(12):2133–2137PubMedGoogle Scholar
  150. 150.
    van Loon J, Janssen MH, Ollers M, Aerts HJ, Dubois L, Hochstenbag M, Dingemans AM, Lalisang R, Brans B, Windhorst B, van Dongen GA, Kolb H, Zhang J, De Ruysscher D, Lambin P (2010) PET imaging of hypoxia using [18F]HX4: a phase I trial. Eur J Nucl Med Mol Imaging 37(9):1663–1668. PubMedCrossRefGoogle Scholar
  151. 151.
    Vaupel P, Briest S, Hockel M (2002) Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. Wien Med Wochenschr 152(13–14):334–342PubMedCrossRefGoogle Scholar
  152. 152.
    Vaupel P, Mayer A, Höckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Vaupel P, Thews O, Hoeckel M (2001) Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol 18(4):243–259. PubMedCrossRefGoogle Scholar
  154. 154.
    Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, DeMatteo RG, Simon MC, Thompson CB (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A 108(49):19611–19616. PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A (2011) Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 208(2):313–326. PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Wu MZ, Tsai YP, Yang MH, Huang CH, Chang SY, Chang CC, Teng SC, Wu KJ (2011) Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol Cell 43(5):811–822. PubMedCrossRefGoogle Scholar
  159. 159.
    Wu Y, Hao G, Ramezani S, Saha D, Zhao D, Sun X, Sherry AD (2015) [(68) Ga]-HP-DO3A-nitroimidazole: a promising agent for PET detection of tumor hypoxia. Contrast Media Mol Imaging 10(6):465–472. PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, Kung AL (2009) Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci U S A 106(11):4260–4265. PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY, Kuriyama T, Cheng SH, Gregory RJ, Jiang C (2003) Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93(7):664–673. PubMedCrossRefGoogle Scholar
  162. 162.
    Yang J, Ledaki I, Turley H, Gatter KC, Montero JC, Li JL, Harris AL (2009) Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases. Ann N Y Acad Sci 1177:185–197. PubMedCrossRefGoogle Scholar
  163. 163.
    Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA 3rd, Peters EC, Driggers EM, Hsieh-Wilson LC (2012) Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337(6097):975–980. PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Zhang M, Qiu Q, Li Z, Sachdeva M, Min H, Cardona DM, DeLaney TF, Han T, Ma Y, Luo L, Ilkayeva OR, Lui K, Nichols AG, Newgard CB, Kastan MB, Rathmell JC, Dewhirst MW, Kirsch DG (2015) HIF-1 alpha regulates the response of primary sarcomas to radiation therapy through a cell autonomous mechanism. Radiat Res 183(6):594–609. PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Zhang P, Yao Q, Lu L, Li Y, Chen PJ, Duan C (2014) Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep 6(6):1110–1121. PubMedCrossRefGoogle Scholar
  166. 166.
    Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835PubMedGoogle Scholar
  167. 167.
    Zhu H, Chen XP, Luo SF, Guan J, Zhang WG, Zhang BX (2005) Involvement of hypoxia-inducible factor-1-alpha in multidrug resistance induced by hypoxia in HepG2 cells. J Exp Clin Cancer Res 24(4):565–574PubMedGoogle Scholar
  168. 168.
    Ziemer LS, Evans SM, Kachur AV, Shuman AL, Cardi CA, Jenkins WT, Karp JS, Alavi A, Dolbier WR Jr, Koch CJ (2003) Noninvasive imaging of tumor hypoxia in rats using the 2-nitroimidazole 18F-EF5. Eur J Nucl Med Mol Imaging 30(2):259–266. PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PathologyUT Southwestern Medical CenterDallasUSA
  2. 2.Department of PharmacologyUT Southwestern Medical CenterDallasUSA
  3. 3.Department of Neurology and NeurotherapeuticsUT Southwestern Medical CenterDallasUSA

Personalised recommendations