Advertisement

Deep-Sea Mining and the Environment: An Introduction

  • Rahul Sharma
  • Samantha Smith
Chapter

Abstract

Seafloor minerals, many of which occur in the deep ocean in international waters, have attracted significant attention due to the discovery of deposits with high metal grades and large volumes, in addition to the growth in global demand for strategic metals such as copper, nickel, cobalt, and rare earths. Furthermore, much of the world is recognizing the need to transition to a clean energy, low-carbon economy, and to do so requires metals used in clean energy infrastructure and technologies, metals such as manganese, nickel, copper, and cobalt (World Bank 2017), the same metals found in, for example, polymetallic nodule deposits. This has led to several entities obtaining exploration contracts for areas of the seafloor governed under international regulations and developing technologies for their extraction. At the same time, environmental groups have raised concerns over the possible environmental impacts of deep-sea mining on seafloor and deep-sea ecosystems. This chapter provides an overview of the general environmental issues and concerns being raised in relation to deep-sea mining, introduces some of the mechanisms being put in place to ensure the effective protection of the marine environment, and raises pertinent questions that are being or will need to be addressed as the deep-sea minerals industry moves forward into reality.

Keywords

Deep-sea mining Environmental issues Sustainable development 

Notes

Acknowledgment

The maps showing exploration areas for minerals in different oceans are from the website (www.isa.org.jm) of the International Seabed Authority (ISA), Jamaica. The permission granted by ISA to reproduce these maps is gratefully acknowledged. Tables 1 and 2 have been compiled by Ms. Farida Mustafina, student of POMOR program at St. Petersburg State University, Russia, during her internship at the National Institute of Oceanography, Goa, India.

References

  1. Amos, A. F., & Roels, O. A. (1977). Environmental aspects of manganese nodule mining. Marine Policy, 1, pp. 160–162.Google Scholar
  2. Billett, D. S. M., Jones, D. O. B., & Weaver, P. P. E. (2019). Improving environmental management practices in deep-sea mining. In R. Sharma (Ed.), Deep-sea mining and environment – Impacts, consequences and management. Cham: Springer International Publishers AG.Google Scholar
  3. Cherkashov, G. (2017). Seafloor massive sulfide deposits: Distribution and prospecting. In R. Sharma (Ed.), Deep-sea mining – Resource potential, technical and environmental considerations (pp. 143–164). Cham: Springer International Publishing AG.CrossRefGoogle Scholar
  4. Cronan, D. S. (1980). Underwater minerals (p. 362). London: Academic Press.Google Scholar
  5. Cuyvers, L., Berry, W., Gjerde, K., Thiele, T., & Wilhem, C. (2018). Deep seabed mining: a rising environmental challenge. Gland: IUCN and Gallifrey Foundation. x + 74 pp.CrossRefGoogle Scholar
  6. Foell, E. J., Thiel, H., & Schriever, G. (1990). DISCOL: A long term largescale disturbance – Recolonisation experiment in the abyssal eastern tropical Pacific Ocean. Proceedings of Offshore Technology Conference (pp. 497–503). Houston, USA, Paper No. 6328.Google Scholar
  7. Fukushima, T. (1995). Overview Japan deep-sea impact experiment = JET. Proceedings of 1st ISOPE Ocean Mining Symposium (pp. 47–53). Tsukuba, Japan, ISOPE.Google Scholar
  8. Glumov, I. F., Kuzneicov, K. M., & Prokazova, M. S. (2000). Ocenkaznaczzenija mineralych resursov meidunarodnogorajonamorskogodna w mineral nosyriewompotenciale Rossijskoj Federacii (in Russian). In Proceedings of Geological Congress (pp. 27–29). St. Petersburg.Google Scholar
  9. Gollner, S., Kaiser, S., Menzel, L., Jones, D. O. B., Brown, A., Mestre, N. C., van Oevelen, D., Menot, L., Colaço, A., Canals, M., Cuvelier, D., Durden, J. M., Gebruk, A., Egho, G. A., Haeckel, M., Marcon, Y., Mevenkamp, L., Morato, T., Pham, C. K., Purser, A., Sanchez-Vidal, A., Vanreusel, A., Vink, A., & Martinez Arbizu, P. (2017). Resilience of benthic deep-sea fauna to mining activities. Marine Environmental Research, 129(Suppl. C), 76–101.CrossRefGoogle Scholar
  10. Halbach, P., Jahn, A., & Cherkashov, G. (2017). Marine co-rich ferromanganese crust deposits: Description and formation, occurrences and distribution, estimated world-wide resources. In R. Sharma (Ed.), Deep-sea mining – Resource potential, technical and environmental considerations (pp. 65–141). Cham: Springer International Publishing AG.CrossRefGoogle Scholar
  11. Hein, J. R., Mizell, K., Koschinsky, A., & Conrad, T. A. (2013). Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51, 1–14.CrossRefGoogle Scholar
  12. Hong, S., Kim, H.-W., Yeu, T., Choi, J.-S., Lee, T. H., Bae, D. S., & Lee, J.-G. (2019). Technologies for safe and sustainable mining of deep-seabed minerals. In R. Sharma (Ed.), Deep-sea mining and environment – impacts, consequences and management. Cham: Springer International Publishers AG.Google Scholar
  13. Jones, D. O. B., Kaiser, S., Sweetman, A. K., Smith, C. R., Menot, L., Vink, A., Trueblood, D., Greinert, J., Billett, D. S. M., Arbizu, P. M., Radzeijewska, T., Singh, R., Ingole, B., Stratman, T., Simon-Lledo, S., Durden, J. M., & Clark, M. R. (2017). Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS One, 12(2), e0171750.CrossRefGoogle Scholar
  14. Ingole, B. S., Ansari, Z. A., Matondkar, G. P., & Rodrigues, N. (1999). Immediate response of meio and macrobenthos to disturbance caused by a benthic disturber. The Proceedings of the Third ISOPE Ocean Mining Symposium (pp. 191–197). Goa, India.Google Scholar
  15. ISA. (1998). Draft guidelines for the assessment of the possible environmental impacts arising from exploration of deep-seabed polymetallic nodules from the area. Proceedings of Workshop by the International Seabed Authority (pp. 289). Sanya, China.Google Scholar
  16. ISA. (2010). Decision of the assembly of the International Seabed Authority relating to the regulations on prospecting and exploration for polymetallic sulphides in the area. International Seabed Authority ISBA/16/A/12/Rev.1 (pp. 49).Google Scholar
  17. ISA. (2011). Environmental management plan for the Clarion-Clipperton zone. International Seabed Authority ISBA/17/LTC/7 (pp. 18).Google Scholar
  18. ISA. (2012). Decision of the Assembly of the International Seabed Authority relating to the regulations on prospecting and exploration for cobalt-rich ferromanganese crusts in the area. International Seabed Authority ISBA/18/A/11 (pp. 49).Google Scholar
  19. ISA. (2013a). Decision of the Council of the International Seabed Authority relating to amendments to the regulations on prospecting and exploration for polymetallic nodules in the area and related matters. International Seabed Authority ISBA/19/C/17 (pp. 49).Google Scholar
  20. ISA. (2013b). Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the area. International Seabed Authority ISBA/19/LTC/8 (pp. 32).Google Scholar
  21. ISA. (2018). Draft regulations on the exploitation of mineral resources in the area. International Seabed Authority, Jamaica, ISBA/24/LTC/WP.1 (pp. 97). April 2018.Google Scholar
  22. Kotlinski, R. (2001). Mineral resources of the world’s ocean – Their importance for global economy in the 21st century. In Proceedings of 4th ISOPE ocean mining symposium (pp. 1–7). Szczecin, Poland: International Society for Offshore and Polar Engineers.Google Scholar
  23. Lenoble, J. P. (2000). A comparison of possible economic returns from mining deep-sea polymetallic nodules, polymetallic massive sulphides and cobalt-rich ferromanganese crusts. In Proceedings of workshop on mineral resources (pp. 1–22). Jamaica: International Seabed Authority.Google Scholar
  24. Lodge, M. W., Segerson, K., & Squires, D. (2017). Sharing and preserving the resources in the deep-sea: Challenges for the International Seabed Authority. International Journal of Marine and Coastal Law, 32, 427–457.CrossRefGoogle Scholar
  25. Ozturgut, E., Lavelle, J. W., Steffin, O., & Swift, S. A. (1980). Environmental investigation during manganese nodule mining tests in the north equatorial Pacific. In November 1978, NOAA Technical Memorandum ERL MESA-48. Colorado, USA: National Oceanic and Atmospheric Administration, 50.Google Scholar
  26. Pearson, J. S. (1975). Ocean floor mining (p. 201). Park Ridge: Noyes Data Corporation.Google Scholar
  27. Radziejewska, T. (1997). Immediate responses of benthic meio- and megafauna to disturbance caused by polymetallic nodule miner simulator. In Proceedings international symposium environmental studies for deep-sea mining (pp. 223–236). Tokyo, Japan: Metal Mining Agency of Japan.Google Scholar
  28. Rona, P. A. (2003). Resources of the ocean floor. Science, 299, 673–674.CrossRefGoogle Scholar
  29. Sharma, R., Nath, B. N., Parthiban, G., & Sankar, S. J. (2001). Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining. Deep-Sea Research II, 48, 3363–3380.CrossRefGoogle Scholar
  30. Sharma, R. (2015). Environmental issues of deep-sea mining. Procedia Earth and Planetary Science, 11, 204–211.CrossRefGoogle Scholar
  31. Sharma, R. (2017). Deep-sea mining: Current status and future considerations. In R. Sharma (Ed.), Deep-sea mining (pp. 3–21). Cham: Springer International Publishers AG.CrossRefGoogle Scholar
  32. Sharma, R., Mustafina, F., & Cherkashov, C. (2019). Review of mining rates, environmental impacts, metal values and investments for polymetallic nodules mining. In R. Sharma (Ed.), Deep-sea mining and environment – Impacts, consequences and management. Cham: Springer International Publishers AG.Google Scholar
  33. Shirayama, Y. (1999). Biological results of JET project: An overview. In Proceedings 3rd ISOPE ocean mining symposium (pp. 185–190). Goa, India: ISOPE.Google Scholar
  34. Singh, T. R. P., & Sudhakar, M. (2015). Estimating potential of additional mine-sites for polymetallic nodules in Pacific and Indian oceans. International Journal of Earth Sciences and Engineering, 8, 1938–1941.Google Scholar
  35. Takaya, Y., Yasukawa, K., Kawasaki, T., Fujinaga, K., Ohta, J., Usui, Y., Nakamura, K., Kimura, J.-I., Chang, Q., Hamada, M., Dodbiba, G., Nozaki, T., Iijima, K., Morisawa, T., Kuwahara, T., Ishida, Y., Ichimura, T., Kitazume, M., Fujita, T., & Kato, Y. (2018). The tremendous potential of deep-sea mud as a source of rare-earth elements. Scientific Reports, 8, 5763.  https://doi.org/10.1038/s41598-018-23948-5.CrossRefGoogle Scholar
  36. Thiel, H., Angel, M. V., Foell, E. J., Rice, A. L., & Schriever, G. (1997). Environmental risks from large-scale ecological research in the deep sea: A desk study. Marine Science and Technology, pp. 1–209.Google Scholar
  37. Tkatchenko, G., Radziejewska, T., Stoyanova, V., Modlitba, I., & Parizek, A. (1996). Benthic impact experiment in the IOM pioneer area: Testing for effects of deep-sea disturbance. In International seminar on deep sea-bed mining technology. Beijing, China: China Ocean Mineral Resources R&D Association (C55-C68).Google Scholar
  38. Trueblood, D. D., Ozturgut, E., Pilipchuk, M., & Gloumov, I. F. (1997). The ecological impacts of the joint U.S.-Russian benthic impact experiment. In Proceedings international symposium environmental studies for deep-sea mining (pp. 237–243). Tokyo, Japan: Metal Mining Agency of Japan.Google Scholar
  39. UNOET. (1987). Delineation of mine sites and potential in different sea areas (p. 27). London: UN Ocean Economics and Technology Branch and Graham & Trotman Limited.Google Scholar
  40. Van Dover, C. L. (2011). Mining seafloor massive sulphides and biodiversity: What is at risk? ICES Journal of Marine Science, 68, 341–348.CrossRefGoogle Scholar
  41. Van Dover, C. L., Ardron, J. A., Escobar, E., Gianni, M., Gjerde, K. M., Jeckel, A., Jones, D. O. B., Levin, L. A., Niner, H. J., Pendleton, L., Smith, C. R., Thiele, T., Turner, P. J., Watling, L., & Weaver, P. P. E. (2017). Biodiversity loss from deep-sea mining. Nature Geoscience, 10(7), 464.CrossRefGoogle Scholar
  42. Van Nijen, K., Passel, S. V., & Squires, D. (2018). A stochastic techno-economic assessment of seabed mining of polymetallic nodules in the clarion Clipperton fracture zone. Marine Policy, 95, 133–141.CrossRefGoogle Scholar
  43. Weaver, P., & Billett, D. (2019). Environmental impacts of nodule, crust and sulphide mining. In R. Sharma (Ed.), Deep-sea mining and environment – Impacts, consequences and management. Cham: Springer International Publishers AG.Google Scholar
  44. World Bank. (2017). The growing role of minerals and metals for a low carbon future. Washington, DC: World Bank Publications. (http://documents.worldbank.org/curated/en/207371500386458722/pdf/117581-WP-P159838-PUBLIC-ClimateSmartMiningJuly.pdf).CrossRefGoogle Scholar
  45. Yamazaki, T., & Sharma, R. (2001). Estimation of sediment properties during benthic impact experiments. Marine Georesources and Geotechnology, 19, 269–289.CrossRefGoogle Scholar
  46. Zepf, V., Simmons, J., Reller, A., Ashfield, M., & Rennie, C. (2014). BP 2014 Materials critical to the energy industry. An introduction (2nd ed., p. 94). London: British Petroleum.Google Scholar
  47. en.wikipedia.org. Wikipedia, the free encyclopedia. Accessed Sept 2018.
  48. www.isa.org.jm. Accessed 12 June 2018.
  49. www.statista.com. Accessed 12 June 2018.
  50. www.usgs.gov. Accessed Sept 2018.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rahul Sharma
    • 1
  • Samantha Smith
    • 2
    • 3
  1. 1.CSIR-National Institute of OceanographyDona PaulaIndia
  2. 2.Blue Globe SolutionsTorontoCanada
  3. 3.Nauru Ocean Resources Inc.AiwoNauru

Personalised recommendations