Advertisement

Evaluation of the Human-Structure-Soil Interaction on a Two-Wheel Tractor Using Modal Analysis Techniques

  • E. Velazquez-Miranda
  • G. Silva-Navarro
  • J. Bory-Reyes
  • O. A. Garcia-Perez
  • L. G. Trujillo-Franco
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

This work considers the experimental evaluation on a two-wheel tractor, employed for small agricultural practices, to characterize the human-structure-soil interaction under typical activities into small greenhouses (e.g., tillage). First, the two-wheel tractor is evaluated to get its modal parameters and, then, the machine is tested for endogenous excitation due to different engine speeds and for several working scenarios (operational modal analysis). In particular, the modal testing is focused on the human-structure-soil interaction to verify how the vibrations and noise affect to the human operator and, thus, propose passive solutions to reduce adverse effects caused on humans via passive damping injection and/or proper structural modifications. The results are used to evaluate the overall dynamic performance in a system-theoretic approach for decision-making during the design and evaluation of this machinery.

Keywords

Two-wheel tractor Experimental modal analysis Operational modal analysis Human-machine interaction 

References

  1. 1.
    Velazquez-Miranda, E., Silva-Navarro, G., Bory-Reyes, J.: On the design methodologies for agricultural machines in Mexico. In: 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, pp. 1–6 (2017)Google Scholar
  2. 2.
    Velazquez-Miranda, E., Bory-Reyes, J., Silva-Navarro, G., Garcia-Perez, O.A., Trujillo-Franco, L.G.: On the dynamic analysis, evaluation and functional design of a two-wheel tractor. In: 25th International Congress on Sound and Vibration (ICSV25), Hiroshima, Japan (2018)Google Scholar
  3. 3.
    Crocker, M.J.: Handbook of Noise and Vibration Control. Wiley, New Jersey (2007)CrossRefGoogle Scholar
  4. 4.
    Braun, S., Ewins, D.J., Rao, S.S.: Encyclopedia of Vibration. Academic, San Diego (2002)Google Scholar
  5. 5.
    Gheorghe, G.V., Persu, C., Gageanu, I., Cujbescu, D.: Structural and modal analysis in SolidWorks of basic structure of equipment to prepare germinative bed in strips. In: 17th International Scientific Conference Engineering for Rural Development, Jelgava, Romania (2018)Google Scholar
  6. 6.
    Guo, L., Jian, C., Hangjia, X., Shimeng, W.: Vibration test and analysis of mini-tiller. Biol. Eng. 9, 97–103 (2016)Google Scholar
  7. 7.
    Dewangan, K.N., Tewari, V.K.: Characteristics of hand-transmitted vibration of a hand tractor used in three operational modes. Int. J. Ind. Ergon. 39(1), 239–245 (2009)CrossRefGoogle Scholar
  8. 8.
    Niu, P., Yang, M.J., Chen, J., Yang, L., Xie, S.Y., Chen, X.B.: Structural optimization of a handheld tiller handrail by vibration modal analysis. INMATEH. 52, 91–98 (2017)Google Scholar
  9. 9.
    Chaturvedi, V., Kumar, A., Singh, J.K.: Power tiller: vibration magnitudes and intervention development for vibration reduction. Appl. Ergon. 43(5), 891–901 (2012)CrossRefGoogle Scholar
  10. 10.
    Adewusi, S., Thomas, M., Vu, V.H., Li, W.: Modal parameters of the human hand-arm using finite element and operational modal analysis. Mech Ind. 15(6), 541–549 (2014)CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2020

Authors and Affiliations

  • E. Velazquez-Miranda
    • 1
  • G. Silva-Navarro
    • 2
  • J. Bory-Reyes
    • 1
  • O. A. Garcia-Perez
    • 2
  • L. G. Trujillo-Franco
    • 2
  1. 1.Seccion de Estudios de Posgrado e Investigacion, ESIME-ZACATENCOInstituto Politecnico NacionalCiudad de MexicoMexico
  2. 2.Seccion de Mecatronica, Departamento de Ingenieria ElectricaCentro de Investigacion y de Estudios Avanzados del I.P.N.Ciudad de MexicoMexico

Personalised recommendations