Hypercaloric Diet-Induced Obesity and Obesity-Related Metabolic Disorders in Experimental Models

  • Natália Pinheiro-Castro
  • Lívia Beatriz Aparecida Ribeiro Silva
  • Gabriela Machado Novaes
  • Thomas Prates OngEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1134)


Overnutrition and obesity have developed into a major public health problem across different parts of the world. Epidemiological studies have shown that excessive intake of dietary components, such as fatty acids and/or sugars, can promote obesity. In this context, the use of dietary intervention in animal models that respond to a diet similar to humans is useful to understand this preventable, multifactorial disease. The aim of this chapter is to aid researchers in choosing specific nutritional interventions and animal strains to induce obesity and obesity-related morbidities in experimental models.


High-fat diet Western diets Fatty acids Animal model Obesity 


  1. 1.
    Ng M, Fleming T, Robinson M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet 384:766–781CrossRefGoogle Scholar
  2. 2.
    Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham heart study. Circulation 67:968–977CrossRefGoogle Scholar
  3. 3.
    Sacco MR, de Castro NP, Euclydes VLV, Souza JM, Rondó PH (2013) Birth weight, rapid weight gain in infancy and markers of overweight and obesity in childhood. Eur J Clin Nutr 67:1147–1153CrossRefGoogle Scholar
  4. 4.
    Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23:270–299CrossRefGoogle Scholar
  5. 5.
    Heitmann BL, Lissner L (1995) Dietary underreporting by obese individuals–is it specific or non-specific? BMJ 311:986–989CrossRefGoogle Scholar
  6. 6.
    Ong TP, Guest PC (2018) Nutritional programming effects on development of metabolic disorders in later life. Methods Mol Biol 1735:3–17CrossRefGoogle Scholar
  7. 7.
    Fenton PF, Dowling MT (1953) Studies on obesity. J Nutr 49:319–331CrossRefGoogle Scholar
  8. 8.
    Buettner R, Schölmerich J, Bollheimer LC (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 15:798–808CrossRefGoogle Scholar
  9. 9.
    Mickelsen O, Takahashi S, Craig C (1955) Experimental obesity. J Nutr 57:541–554CrossRefGoogle Scholar
  10. 10.
    Woods SC, D’Alessio DA, Tso P, Rushing PA, Clegg DJ, Benoit SC et al (2004) Consumption of a high-fat diet alters the homeostatic regulation of energy balance. Physiol Behav 83:573–578CrossRefGoogle Scholar
  11. 11.
    Fontelles CC, Guido LN, Rosim MP, Andrade Fde O, Jin L, Inchauspe J et al (2016) Paternal programming of breast cancer risk in daughters in a rat model: opposing effects of animal- and plant-based high-fat diets. Breast Cancer Res 18:71.
  12. 12.
    Hariri N, Gougeon R, Thibault L (2010) A highly saturated fat-rich diet is more obesogenic than diets with lower saturated fat content. Nutr Res 30:632–643CrossRefGoogle Scholar
  13. 13.
    Masi LN, Martins AR, Crisma AR, do Amaral CL, Davanso MR, Serdan TDA et al (2017) Combination of a high-fat diet with sweetened condensed milk exacerbates inflammation and insulin resistance induced by each separately in mice. Sci Rep 7:3937. Scholar
  14. 14.
    de Oliveira Andrade F, Fontelles CC, Rosim MP, de Oliveira TF, de Melo Loureiro AP, Mancini-Filho J et al (2014) Exposure to lard-based high-fat diet during fetal and lactation periods modifies breast cancer susceptibility in adulthood in rats. J Nutr Biochem 25:613–622CrossRefGoogle Scholar
  15. 15.
    Olsen MK, Johannessen H, Cassie N, Barrett P, Takeuchi K, Kulseng B et al (2017) Steady-state energy balance in animal models of obesity and weight loss. Scand J Gastroenterol 52:442–449CrossRefGoogle Scholar
  16. 16.
    Blaak EE, Saris WH (1996) Postprandial thermogenesis and substrate utilization after ingestion of different dietary carbohydrates. Metabolism 45:1235–1242CrossRefGoogle Scholar
  17. 17.
    Zeeni N, Dagher-Hamalian C, Dimassi H, Faour WH (2015) Cafeteria diet-fed mice is a pertinent model of obesity-induced organ damage: a potential role of inflammation. Inflamm Res 64:501–512CrossRefGoogle Scholar
  18. 18.
    Bayol SA, Simbi BH, Fowkes RC, Stickland NC (2010) A maternal “junk food” diet in pregnancy and lactation promotes nonalcoholic fatty liver disease in rat offspring. Endocrinology 151:1451–1461CrossRefGoogle Scholar
  19. 19.
    Johnson AR, Wilkerson MD, Sampey BP, Troester MA, Hayes DN, Makowski L (2016) Cafeteria diet-induced obesity causes oxidative damage in white adipose. Biochem Biophys Res Commun 473:545–550CrossRefGoogle Scholar
  20. 20.
    Lalanza JF, Caimari A, del Bas JM, Torregrosa D, Cigarroa I, Pallàs M et al (2014) Effects of a post-weaning cafeteria diet in young rats: metabolic syndrome, reduced activity and low anxiety-like behaviour. PLoS One 9:e85049. Scholar
  21. 21.
    Zeeni N, Daher C, Fromentin G, Tome D, Darcel N, Chaumontet C (2013) A cafeteria diet modifies the response to chronic variable stress in rats. Stress 16:211–219CrossRefGoogle Scholar
  22. 22.
    Castro L, Gao X, Moore AB, Yu L, Di X, Kissling GE et al (2016) A high concentration of genistein induces cell death in human uterine leiomyoma cells by autophagy. Expert Opin Environ Biol 5(Suppl 1).
  23. 23.
    Berridge KC, Ho C-Y, Richard JM, DiFeliceantonio AG (2010) The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res 1350:43–64CrossRefGoogle Scholar
  24. 24.
    Martire SI, Maniam J, South T, Holmes N, Westbrook RF, Morris MJ (2014) Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress. Behav Brain Res 265:132–141CrossRefGoogle Scholar
  25. 25.
    Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT et al (2011) Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity 19:1109–1117CrossRefGoogle Scholar
  26. 26.
    Reichelt AC, Morris MJ, Westbrook RF (2014) Cafeteria diet impairs expression of sensory-specific satiety and stimulus-outcome learning. Front Psychol 5:852. Scholar
  27. 27.
    Saper CB, Chou TC, Elmquist JK (2002) The need to feed: homeostatic and hedonic control of eating. Neuron 36:199–211CrossRefGoogle Scholar
  28. 28.
    Nilsson C, Raun K, Yan F, Larsen MO, Tang-Christensen M (2012) Laboratory animals as surrogate models of human obesity. Acta Pharmacol Sin 33:173–181CrossRefGoogle Scholar
  29. 29.
    Bortolin RC, Vargas AR, Gasparotto J, Chaves PR, Schnorr CE, Martinello KB et al (2018) A new animal diet based on human Western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. Int J Obes 42:525–534CrossRefGoogle Scholar
  30. 30.
    Moore BJ (1987) The cafeteria diet—an inappropriate tool for studies of thermogenesis. J Nutr 117:227–231CrossRefGoogle Scholar
  31. 31.
    Maioli TU, Gonçalves JL, Miranda MCG, Martins VD, Horta LS, Moreira TG et al (2016) High sugar and butter (HSB) diet induces obesity and metabolic syndrome with decrease in regulatory T cells in adipose tissue of mice. Inflamm Res 65:169–178CrossRefGoogle Scholar
  32. 32.
    Samuelsson A-M, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH et al (2007) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51:383–392CrossRefGoogle Scholar
  33. 33.
    Crescenzo R, Bianco F, Mazzoli GA, Cancelliere R, di Fabio GA et al (2015) Fat quality influences the obesogenic effect of high fat diets. Nutrients 7:9475–9491CrossRefGoogle Scholar
  34. 34.
    Aller EEJG, Abete I, Astrup A, Martinez JA, van Baak MA (2011) Starches, sugars and obesity. Nutrients 3:341–369CrossRefGoogle Scholar
  35. 35.
    Lennerz B, Lennerz JK (2018) Food addiction, high-glycemic-index carbohydrates, and obesity. Clin Chem 64:64–71CrossRefGoogle Scholar
  36. 36.
    Alfaradhi MZ, Fernandez-Twinn DS, Martin-Gronert MS, Musial B, Fowden A, Ozanne SE (2014) Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. Am J Physiol Regul Integr Comp Physiol 307:R26–R34. Scholar
  37. 37.
    Roberts JS, Perets RA, Sarfert KS, Bowman JJ, Ozark PA, Whitworth GB et al (2017) High-fat high-sugar diet induces polycystic ovary syndrome in a rodent model. Biol Reprod 96:551–562CrossRefGoogle Scholar
  38. 38.
    Barnard DE, Lewis SM, Teter BB, Thigpen JE (2009) Open- and closed-formula laboratory animal diets and their importance to research. J Am Assoc Lab Anim Sci 48:709–713PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ble-Castillo JL, Aparicio-Trapala MA, Juárez-Rojop IE, Torres-Lopez JE, Mendez JD, Aguilar-Mariscal H et al (2012) Differential effects of high-carbohydrate and high-fat diet composition on metabolic control and insulin resistance in normal rats. Int J Environ Res Public Health 9:1663–1676CrossRefGoogle Scholar
  40. 40.
    Panchal SK, Poudyal H, Iyer A, Nazer R, Alam MA, Diwan V et al (2011) High-carbohydrate, high-fat diet–induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 57:611–624CrossRefGoogle Scholar
  41. 41.
    Zubiría M, Gambaro S, Rey M, Carasi P, Serradell MLÁ, Giovambattista A (2017) Deleterious metabolic effects of high fructose intake: the preventive effect of lactobacillus kefiri administration. Nutrients 9:470. Scholar
  42. 42.
    Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V et al (2010) High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 52:934–944CrossRefGoogle Scholar
  43. 43.
    Wong SK, Chin K-Y, Suhaimi FH, Ahmad F, Ima-Nirwana S (2018) The effects of a modified high-carbohydrate high-fat diet on metabolic syndrome parameters in male rats. Exp Clin Endocrinol Diabetes 126:205–212CrossRefGoogle Scholar
  44. 44.
    Storlien LH, Higgins JA, Thomas TC, Brown MA, Wang HQ, Huang XF et al (2000) Diet composition and insulin action in animal models. Br J Nutr 83(Suppl 1):S85–S90PubMedGoogle Scholar
  45. 45.
    Castonguay TW, Hirsch E, Collier G (1981) Palatability of sugar solutions and dietary selection? Physiol Behav 27:7–12CrossRefGoogle Scholar
  46. 46.
    Sclafani A, Xenakis S (1984) Sucrose and polysaccharide induced obesity in the rat. Physiol Behav 32:169–174CrossRefGoogle Scholar
  47. 47.
    Oron-Herman M, Kamari Y, Grossman E, Yeger G, Peleg E, Shabtay Z et al (2008) Metabolic syndrome: comparison of the two commonly used animal models. Am J Hypertens 21:1018–1022CrossRefGoogle Scholar
  48. 48.
    London E, Lala G, Berger R, Kohli AA, Renner M, Jackson A et al (2007) Sucrose access differentially modifies 11β-Hydroxysteroid Dehydrogenase-1 and Hexose-6-Phosphate dehydrogenase message in liver and adipose tissue in rats. J Nutr 137:2616–2621CrossRefGoogle Scholar
  49. 49.
    Goodson S, Halford JC, Jackson HC, Blundell JE (2001) Paradoxical effects of a high sucrose diet: high energy intake and reduced body weight gain. Appetite 37:253–254CrossRefGoogle Scholar
  50. 50.
    Lomba A, Milagro FI, García-Díaz DF, Campión J, Marzo F, Martínez JA et al (2009) A high-sucrose isocaloric pair-fed model induces obesity and impairs NDUFB6 gene function in rat adipose tissue. J Nutrigenet Nutrigenomics 2:267–272CrossRefGoogle Scholar
  51. 51.
    Toida S, Takahashi M, Shimizu H, Sato N, Shimomura Y, Kobayashi I (1996) Effect of high sucrose feeding on fat accumulation in the male Wistar rat. Obes Res 4:561–568CrossRefGoogle Scholar
  52. 52.
    Lawton CL, Blundell JE (1992) The effect of d-fenfluramine on intake of carbohydrate supplements is influenced by the hydration of the test diets. Behav Pharmacol 3:517–523CrossRefGoogle Scholar
  53. 53.
    Blundell JE, Hill AJ (1988) Do serotoninergic drugs decrease energy intake by reducing fat or carbohydrate intake? Effect of d-fenfluramine with supplemented weight-increasing diets. Pharmacol Biochem Behav 31:773–778CrossRefGoogle Scholar
  54. 54.
    Westwater ML, Fletcher PC, Ziauddeen H (2016) Sugar addiction: the state of the science. Eur J Nutr 55:55–69CrossRefGoogle Scholar
  55. 55.
    Abete I, Parra MD, Zulet MA, Martínez JA (2006) Different dietary strategies for weight loss in obesity: role of energy and macronutrient content. Nutr Res Rev 19:5. Scholar
  56. 56.
    Barrett P, Mercer JG, Morgan PJ (2016) Preclinical models for obesity research. Dis Model Mech 9:1245–1255CrossRefGoogle Scholar
  57. 57.
    Mittwede PN, Clemmer JS, Bergin PF, Xiang L (2016) Obesity and critical illness. Shock 45:349–358CrossRefGoogle Scholar
  58. 58.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432CrossRefGoogle Scholar
  59. 59.
    Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR et al (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141CrossRefGoogle Scholar
  60. 60.
    Church C, Moir L, McMurray F, Banks GT, Teboul L, Wells S et al (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42:1086–1092CrossRefGoogle Scholar
  61. 61.
    Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC et al (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14:140–162CrossRefGoogle Scholar
  62. 62.
    Speakman J, Hambly C, Mitchell S, Król E (2007) Animal models of obesity. Obes Rev 8:55–61CrossRefGoogle Scholar
  63. 63.
    von Aulock S (2014) Number of animals used for experimental purposes lower in the European Union. ALTEX 31(1):1Google Scholar
  64. 64.
    Iannaccone PM, Jacob HJ (2009) Rats! Dis Model Mech 2:206–210CrossRefGoogle Scholar
  65. 65.
    Kanasaki K, Koya D (2011) Biology of obesity: lessons from animal models of obesity. J Biomed Biotechnol 2011:1–11CrossRefGoogle Scholar
  66. 66.
    Kucera GT, Bortner DM, Rosenberg MP (1996) Overexpression of an Agouti cDNA in the skin of transgenic mice recapitulates dominant coat color phenotypes of spontaneous mutants. Dev Biol 173:162–173CrossRefGoogle Scholar
  67. 67.
    Coleman DL (1978) Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14:141–148CrossRefGoogle Scholar
  68. 68.
    Leibowitz SF, Alexander J, Dourmashkin JT, Hill JO, Gayles EC, Chang GQ (2005) Phenotypic profile of SWR/J and A/J mice compared to control strains: possible mechanisms underlying resistance to obesity on a high-fat diet. Brain Res 1047:137–147CrossRefGoogle Scholar
  69. 69.
    Levin BE, Dunn-Meynell AA (2000) Defense of body weight against chronic caloric restriction in obesity-prone and -resistant rats. Am J Physiol Regul Integr Comp Physiol 278:R231–R237CrossRefGoogle Scholar
  70. 70.
    Lin L, York DA, Bray GA (1996) Comparison of Osborne-Mendel and S5B/PL strains of rat: central effects of galanin, NPY, beta-casomorphin and CRH on intake of high-fat and low-fat diets. Obes Res 4:117–124CrossRefGoogle Scholar
  71. 71.
    Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CJ et al (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13:18–19CrossRefGoogle Scholar
  72. 72.
    Chua SC, White DW, Wu-Peng XS, Liu SM, Okada N, Kershaw EE et al (1996) Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr). Diabetes 45:1141–1143Google Scholar
  73. 73.
    Schwartz MW, Bergman RN, Kahn SE, Taborsky GJ Jr, Fisher LD, Sipols AJ et al (1991) Evidence for entry of plasma insulin into cerebrospinal fluid through an intermediate compartment in dogs. Quantitative aspects and implications for transport. J Clin Invest 88:1272–1281CrossRefGoogle Scholar
  74. 74.
    Coate KC, Kraft G, Shiota M, Smith MS, Farmer B, Neal DW et al (2015) Chronic overeating impairs hepatic glucose uptake and disposition. Am J Physiol Endocrinol Metab 308:E860–E867CrossRefGoogle Scholar
  75. 75.
    Stachowiak M, Szczerbal I, Switonski M (2016) Genetics of adiposity in large animal models for human obesity-studies on pigs and dogs. Prog Mol Biol Transl Sci 140:233–270CrossRefGoogle Scholar
  76. 76.
    Bauer SA, Arndt TP, Leslie KE, Pearl DL, Turner PV (2011) Obesity in rhesus and cynomolgus macaques: a comparative review of the condition and its implications for research. Comp Med 61:514–526PubMedPubMedCentralGoogle Scholar
  77. 77.
    Harwood HJ, Listrani P, Wagner JD (2012) Nonhuman Primates and other animal models in diabetes research. J Diabetes Sci Technol 6:503–514CrossRefGoogle Scholar
  78. 78.
    Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T et al (2018) Human ageing genomic resources: new and updated databases. Nucleic Acids Res 46:D1083–D1090CrossRefGoogle Scholar
  79. 79.
    Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J et al (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421:268–272.
  80. 80.
    Pospisilik JA, Schramek D, Schnidar H et al (2010) Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140:148–160. Scholar
  81. 81.
    Trinh I, Boulianne GL (2013) Modeling obesity and its associated disorders in drosophila. Physiology 28:117–124. Scholar
  82. 82.
    Watts JL (2009) Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol Metab 20:58–65. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Natália Pinheiro-Castro
    • 1
  • Lívia Beatriz Aparecida Ribeiro Silva
    • 1
  • Gabriela Machado Novaes
    • 1
  • Thomas Prates Ong
    • 1
    Email author
  1. 1.Department of Food Science and Experimental NutritionSchool of Pharmaceutical Sciences, University of São Paulo, and Food Research Center (FoRC)São PauloBrazil

Personalised recommendations