Biogenesis of the Insulin Secretory Granule in Health and Disease

  • Paul C. Guest
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1134)


The secretory granules of pancreatic beta cells are specialized organelles responsible for the packaging, storage and secretion of the vital hormone insulin. The insulin secretory granules also contain more than 100 other proteins including the proteases involved in proinsulin-to insulin conversion, other precursor proteins, minor co-secreted peptides, membrane proteins involved in cell trafficking and ion translocation proteins essential for regulation of the intragranular environment. The synthesis, transport and packaging of these proteins into nascent granules must be carried out in a co-ordinated manner to ensure correct functioning of the granule. The process is regulated by many circulating nutrients such as glucose and can change under different physiological states. This chapter discusses the various processes involved in insulin granule biogenesis with a focus on the granule composition in health and disease.


Pancreatic islets Insulin secretory granules Insulin Biogenesis Chromogranin A Diabetes 


  1. 1.
    Michael J, Carroll R, Swift HH, Steiner DF (1987) Studies on the molecular organization of rat insulin secretory granules. J Biol Chem 262(34):16531–16535PubMedPubMedCentralGoogle Scholar
  2. 2.
    Barg S, Eliasson L, Renström E, Rorsman P (2002) A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse beta-cells. Diabetes 51(Suppl 1):S74–S82PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Olofsson CS, Gopel SO, Barg S, Galvanovskis J, Ma X, Salehi A et al (2002) Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Arch 444:43–51PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hutton JC (1989) The insulin secretory granule. Diabetologia 32(5):271–281PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hutton JC, Penn EJ, Peshavaria M (1983) Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 210(2):297–305PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Davidson HW, Peshavaria M, Hutton JC (1987) Proteolytic conversion of proinsulin into insulin. Identification of a Ca2+-dependent acidic endopeptidase in isolated insulin-secretory granules. Biochem J 246(2):279–286PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hutton JC, Penn EJ, Peshavaria M (1982) Isolation and characterisation of insulin secretory granules from a rat islet cell tumour. Diabetologia 23(4):365–373PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Guest PC, Bailyes EM, Rutherford NG, Hutton JC (1991) Insulin secretory granule biogenesis. Co-ordinate regulation of the biosynthesis of the majority of constituent proteins. Biochem J 274(Pt 1):73–78PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Brunner Y, Couté Y, Iezzi M, Foti M, Fukuda M, Hochstrasser DF et al (2007) Proteomics analysis of insulin secretory granules. Mol Cell Proteomics 6(6):1007–1017PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Schvartz D, Brunner Y, Couté Y, Foti M, Wollheim CB, Sanchez JC (2012) Improved characterization of the insulin secretory granule proteomes. J Proteomics 75:4620–4631PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Cerasi E (1967) An analogue computer model for the insulin response to glucose infusion. Acta Endocrinol 55(1):163–183PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Turner RC, Schneeloch B, Nabarro JD (1972) Biphasic insulin secretory response to intravenous xylitol and glucose in normal, diabetic and obese subjects. J Clin Endocrinol Metab 33(2):301–307CrossRefGoogle Scholar
  13. 13.
    Bratanova-Tochkova TK, Cheng H, Daniel S, Gunawardana S, Liu YJ, Mulvaney-Musa J et al (2002) Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes 51(Suppl 1):S83–S90PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kahn SE, Montgomery B, Howell W, Ligueros-Saylan M, Hsu CH, Devineni D et al (2001) Importance of early phase insulin secretion to intravenous glucose tolerance in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 86:5824–5829PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Mako ME, Starr JI, Rubenstein AH (1977) Circulating proinsulin in patients with maturity onset diabetes. Am J Med 63(6):865–869PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Guest PC, Abdel-Halim SM, Gross DJ, Clark A, Poitout V, Amaria R et al (2002) Proinsulin processing in the diabetic Goto-Kakizaki rat. J Endocrinol 175(3):637–647PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 29:351–366PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Poitout V, Hagman D, Stein R, Artner I, Robertson RP, Harmon JS (2006) Regulation of the insulin gene by glucose and fatty acids. J Nutr 136(4):873–876PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Giddings SJ, Chirgwin J, Permutt MA (1982) Effects of glucose on proinsulin messenger RNA in rats in vivo. Diabetes 31(7):624–629PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Welsh M, Nielsen DA, MacKrell AJ, Steiner DF (1985) Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. II. Regulation of insulin mRNA stability. J Biol Chem 260(25):13590–13594PubMedPubMedCentralGoogle Scholar
  21. 21.
    Fu Z, Gilbert ER, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 9(1):25–53PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hutton JC, Guest PC, Rhodes CJ, Fricker LD, Grimaldi KA, Siddle K et al (1989) Biogenesis of the insulin secretion granule. Journ Annu Diabetol Hotel Dieu 1989:13–28Google Scholar
  23. 23.
    Guest PC, Rhodes CJ, Hutton JC (1989) Regulation of the biosynthesis of insulin-secretory-granule proteins. Co-ordinate translational control is exerted on some, but not all, granule matrix constituents. Biochem J 257(2):431–437PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Egea PF, Stroud RM, Walter P (2005) Targeting proteins to membranes: structure of the signal recognition particle. Curr Opin Struct Biol 15(2):213–220PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Patzelt C, Labrecque AD, Duguid JR, Carroll RJ, Keim PS, Heinrikson RL et al (1978) Detection and kinetic behavior of preproinsulin in pancreatic islets. Proc Natl Acad Sci U S A 75(3):1260–1264PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Liu M, Sun J, Cui J, Chen W, Guo H, Barbetti F et al (2015) INS-gene mutations: from genetics and beta cell biology to clinical disease. Mol Asp Med 42:3–18CrossRefGoogle Scholar
  27. 27.
    Kahn CR, Weir GC (2005) Joslin’s diabetes mellitus, 14th edn. Lippincott Williams & Wilkins, Philadelphia. ISBN 978-8493531836Google Scholar
  28. 28.
    Orci L, Ravazzola M, Storch MJ, Anderson RG, Vassalli JD, Perrelet A (1987) Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles. Cell 49(6):865–868PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Davidson HW, Rhodes CJ, Hutton JC (1988) Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature 333(6168):93–96PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Halban PA (1994) Proinsulin processing in the regulated and the constitutive secretory pathway. Diabetologia 37(Suppl 2):S65–S72PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kahn SE, Halban PA (1997) Release of incompletely processed proinsulin is the cause of the disproportionate proinsulinemia of NIDDM. Diabetes 46(11):1725–1732PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Boland BB, Rhodes CJ, Grimsby JS (2017) The dynamic plasticity of insulin production in β-cells. Mol Metab 6(9):958–973PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lithaw PN (ed) (2009) Glycolysis: regulation, processes & diseases (Biochemistry research trends). Nova Science Publishers Inc, Hauppauge; UK ed. ISBN-10: 1607411032Google Scholar
  34. 34.
    Daniel S, Noda M, Straub SG, Sharp GW (1999) Identification of the docked granule pool responsible for the first phase of glucose-stimulated insulin secretion. Diabetes 48:1686–1690PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Gromada J, Hoy M, Renstrom E, Bokvist K, Eliasson L, Gopel S (1999) CaM kinase II-dependent mobilization of secretory granules underlies acetylcholine-induced stimulation of exocytosis in mouse pancreatic B-cells. J Physiol 518:745–759PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Renstrom E, Eliasson L, Rorsman P (1997) Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol 502:105–118PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Henquin JC, Ishiyama N, Nenquin M, Ravier MA, Jonas JC (2002) Signals and pools underlying biphasic insulin secretion. Diabetes 51(Suppl 1):S60–S67PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Rorsman P, Renstrom E (2003) Insulin granule dynamics in pancreatic beta cells. Diabetologia 46:1029–1045PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Schvartz D, Brunner Y, Couté Y, Foti M, Wollheim CB, Sanchez JC (2012) Improved characterization of the insulin secretory granule proteomes. J Proteome 75(15):4620–4631CrossRefGoogle Scholar
  40. 40.
    Konecki DS, Benedum UM, Gerdes HH, Huttner WB (1987) The primary structure of human chromogranin A and pancreastatin. J Biol Chem 262(35):17026–11730PubMedPubMedCentralGoogle Scholar
  41. 41.
    O’Connor DT, Bernstein KN (1984) Radioimmunoassay of chromogranin A in plasma as a measure of exocytotic sympathoadrenal activity in normal subjects and patients with pheochromocytoma. N Engl J Med 311(12):764–770PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Varndell IM, Lloyd RV, Wilson BS, Polak JM (1985) Ultrastructural localization of chromogranin: a potential marker for the electron microscopical recognition of endocrine cell secretory granules. Histochem J 17(9):981–992PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Di Giacinto P, Rota F, Rizza L, Campana D, Isidori A, Lania A et al (2018) Chromogranin A: from laboratory to clinical aspects of patients with neuroendocrine tumors. Int J Endocrinol 2018:8126087. Scholar
  44. 44.
    Soell M, Feki A, Hannig M, Sano H, Pinget M, Selimovic D (2010) Chromogranin A detection in saliva of type 2 diabetes patients. Bosn J Basic Med Sci 10(1):2–8PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Broedbaek K, Hilsted L (2016) Chromogranin A as biomarker in diabetes. Biomark Med 10(11):1181–1189PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Goetze JP, Alehagen U, Flyvbjerg A, Rehfeld JF (2014) Chromogranin A as a biomarker in cardiovascular disease. Biomark Med 8(1):133–140PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Aardal S, Helle KB (1992) The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept 41(1):9–18PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Tatemoto K, Efendic S, Mutt V, Makk G, Feistner GJ, Barchas JD (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324(6096):476–478PubMedCrossRefGoogle Scholar
  49. 49.
    Curry WJ, Shaw C, Johnston CF, Thim L, Buchanan KD (1992) Isolation and primary structure of a novel chromogranin A-derived peptide, WE-14, from a human midgut carcinoid tumour. FEBS Lett 301(3):319–321PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H et al (1997) Novel autocrine feedback control of catecholamine release. A discrete chromogranin A fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest 100(6):1623–1633PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Koshimizu H, Cawley NX, Kim T, Yergey AL, Loh YP (2011) Serpinin: a novel chromogranin A-derived, secreted peptide up-regulates protease nexin-1 expression and granule biogenesis in endocrine cells. Mol Endocrinol 25:732–744PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Crippa L, Bianco M, Colombo B, Gasparri AM, Ferrero E, Loh YP et al (2013) A new chromogranin A-dependent angiogenic switch activated by thrombin. Blood 121(2):392–402PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bandyopadhyay GK, Mahata SK (2017) Chromogranin A regulation of obesity and peripheral insulin sensitivity. Front Endocrinol (Lausanne) 2017(8):20. Scholar
  54. 54.
    Curry WJ, Johnston CF, Hutton JC, Arden SD, Rutherford NG, Shaw C et al (1991) The tissue distribution of rat chromogranin A-derived peptides: evidence for differential tissue processing from sequence specific antisera. Histochemistry 96(6):531–538PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Watkinson A, Jönsson AC, Davison M, Young J, Lee CM, Moore S et al (1991) Heterogeneity of chromogranin A-derived peptides in bovine gut, pancreas and adrenal medulla. Biochem J 276(Pt 2):471–479PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Arden SD, Rutherford NG, Guest PC, Curry WJ, Bailyes EM, Johnston CF et al (1994) The post-translational processing of chromogranin A in the pancreatic islet: involvement of the eukaryote subtilisin PC2. Biochem J 298(Pt 3):521–528PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hutton JC, Davidson HW, Grimaldi KA, Peshavaria M (1987) Biosynthesis of betagranin in pancreatic beta-cells. Identification of a chromogranin A-like precursor and its parallel processing with proinsulin. Biochem J 244(2):449–456PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Seidah NG, Gaspar L, Mion P, Marcinkiewicz M, Mbikay M, Chrétien M (1990) cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol 9(6):415–424PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Smeekens SP, Steiner DF (1990) Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J Biol Chem 265(6):2997–3000PubMedPubMedCentralGoogle Scholar
  60. 60.
    Seidah NG, Chrétien M (1992) Proprotein and prohormone convertases of the subtilisin family recent developments and future perspectives. Trends Endocrinol Metab 3(4):133–140PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Steiner DF (1998) The proprotein convertases. Curr Opin Chem Biol 2(1):31–39PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Vindrola O, Lindberg I (1992) Biosynthesis of the prohormone convertase mPC1 in AtT-20 cells. Mol Endocrinol 6(7):1088–1094PubMedPubMedCentralGoogle Scholar
  63. 63.
    Benjannet S, Rondeau N, Paquet L, Boudreault A, Lazure C, Chrétien M et al (1993) Comparative biosynthesis, covalent post-translational modifications and efficiency of prosegment cleavage of the prohormone convertases PC1 and PC2: glycosylation, sulphation and identification of the intracellular site of prosegment cleavage of PC1 and PC2. Biochem J 294(Pt 3):735–743PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lee SN, Prodhomme E, Lindberg I (2004) Prohormone convertase 1 (PC1) processing and sorting: effect of PC1 propeptide and proSAAS. J Endocrinol 182(2):353–364PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Rhodes CJ, Alarcon C (1994) What beta-cell defect could lead to hyperproinsulinemia in NIDDM? Some clues from recent advances made in understanding the proinsulin-processing mechanism. Diabetes 43:511–517PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Katsuta H, Ozawa S, Suzuki K, Takahashi K, Tanaka T, Sumitani Y et al (2015) The association between impaired proinsulin processing and type 2 diabetes mellitus in non-obese Japanese individuals. Endocr J 62(6):485–492PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Zhu X, Orci L, Carroll R, Norrbom C, Ravazzola M, Steiner DF (2002) Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc Natl Acad Sci U S A 99(16):10299–10304PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Podlecki DA, Frank BH, Olefsky JM (1984) In vitro characterization of biosynthetic human proinsulin. Diabetes 33(2):111–118PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT et al (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16:303–306PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Jackson RS, Creemers JW, Farooqi IS, Raffin-Sanson ML, Varro A, Dockray GJ et al (2003) Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest 112:1550–1560PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Farooqi IS, Volders K, Stanhope R, Heuschkel R, White A, Lank E et al (2007) Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J Clin Endocrinol Metab 92:3369–3337PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Bennett DL, Bailyes EM, Nielsen E, Guest PC, Rutherford NG, Arden SD et al (1992) Identification of the type 2 proinsulin processing endopeptidase as PC2, a member of the eukaryote subtilisin family. J Biol Chem 267(21):15229–15236PubMedPubMedCentralGoogle Scholar
  73. 73.
    Guest PC, Arden SD, Bennett DL, Clark A, Rutherford NG, Hutton JC (1992) The post-translational processing and intracellular sorting of PC2 in the islets of Langerhans. J Biol Chem 267(31):22401–22406PubMedPubMedCentralGoogle Scholar
  74. 74.
    Furuta M, Carroll R, Martin S, Swift HH, Ravazzola M, Orci L et al (1998) Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31,32 proinsulin intermediates in islets of mice lacking active PC2. J Biol Chem 273(6):3431–3437PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Docherty K, Hutton JC (1983) Carboxypeptidase activity in the insulin secretory granule. FEBS Lett 162(1):137–141PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Davidson HW, Hutton JC (1987) The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem J 245(2):575–582PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Guest PC, Arden SD, Rutherford NG, Hutton JC (1995) The post-translational processing and intracellular sorting of carboxypeptidase H in the islets of Langerhans. Mol Cell Endocrinol 113(1):99–108PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Naggert JK, Fricker LD, Varlamov O, Nishina PM, Rouille Y, Steiner DF et al (1995) Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 10(2):135–142PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Rodriguiz RM, Wilkins JJ, Creson TK, Biswas R, Berezniuk I, Fricker AD et al (2013) Emergence of anxiety-like behaviours in depressive-like Cpe(fat/fat) mice. Int J Neuropsychopharmacol 16(7):1623–1634PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ji L, Wu HT, Qin XY, Lan R (2017) Dissecting carboxypeptidase E: properties, functions and pathophysiological roles in disease. Endocr Connect 6(4):R18–R38PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Li P, Tiwari HK, Lin WY, Allison DB, Chung WK, Leibel RL et al (2014) Genetic association analysis of 30 genes related to obesity in a European American population. Int J Obes 38(5):724–729CrossRefGoogle Scholar
  82. 82.
    Hickey AJ, Bradley JW, Skea GL, Middleditch MJ, Buchanan CM, Phillips AR et al (2009) Proteins associated with immunopurified granules from a model pancreatic islet beta-cell system: proteomic snapshot of an endocrine secretory granule. J Proteome Res 8(1):178–186PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Smith LF (1966) Species variation in the amino acid sequence of insulin. Am J Med 40(5):662–666PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T et al (2017) Granin-derived peptides. Prog Neurobiol 154:37–61PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bradbury AF, Smyth DG (1991) Peptide amidation. Trends Biochem Sci 16(3):112–115PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Strbák V, Dutour A, Nikodémová M, Oliver C (1994) Pancreastatin-like immunoreactivity in the pancreas of newborn rats. Horm Metab Res 26(4):173–174PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Johnson KH, O’Brien TD, Hayden DW, Jordan K, Ghobrial HK, Mahoney WC et al (1988) Immunolocalization of islet amyloid polypeptide (IAPP) in pancreatic beta cells by means of peroxidase-antiperoxidase (PAP) and protein A-gold techniques. Am J Pathol 130(1):1–8PubMedPubMedCentralGoogle Scholar
  88. 88.
    Wasmeier C, Hutton JC (1996) Molecular cloning of phogrin, a protein-tyrosine phosphatase homologue localized to insulin secretory granule membranes. J Biol Chem 271(30):18161–18170PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Höög A, Hu W, Abdel-Halim SM, Falkmer S, Qing L, Grimelius L (1997) Ultrastructural localization of insulin-like growth factor-2 (IGF-2) to the secretory granules of insulin cells: a study in normal and diabetic (GK) rats. Ultrastruct Pathol 21(5):457–466PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Ohara-Imaizumi M, Nishiwaki C, Kikuta T, Nagai S, Nakamichi Y, Nagamatsu S (2004) TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behavior of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells. Biochem J 381:13–18PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kwan EP, Gaisano HY (2009) Rescuing the subprime meltdown in insulin exocytosis in diabetes. Ann NYAcad Sci 1152:154–164CrossRefGoogle Scholar
  92. 92.
    Zhu D, Xie L, Karimian N, Liang T, Kang Y, Huang YC et al (2015) Munc18c mediates exocytosis of pre-docked and newcomer insulin granules underlying biphasic glucose stimulated insulin secretion in human pancreatic beta-cells. Mol Metab 4(5):418–426PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Liang T, Qin T, Xie L, Dolai S, Zhu D, Prentice KJ et al (2017) New roles of syntaxin-1A in insulin granule exocytosis and replenishment. J Biol Chem 292(6):2203–2216PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paul C. Guest
    • 1
  1. 1.Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations