Advertisement

Circular RNAs as Potential Biomarkers and Therapeutic Targets for Metabolic Diseases

  • Mohamed ZaiouEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1134)

Abstract

Epidemiological studies provide evidence of a continuous rise in metabolic diseases throughout industrialized countries. Metabolic diseases are commonly associated with different abnormalities that hold a key role in the emergence and progression of frequent disorders including diabetes mellitus (DM), non-alcoholic fatty liver disease (NAFLD), obesity, metabolic syndrome and cardiovascular diseases. The burden of metabolic diseases is believed to arise through complex interaction between genetic and epigenetic factors, lifestyle changes and environmental exposure to triggering stimuli. The diagnosis and treatment of metabolic disorders continue to be an overwhelming challenge. Thus, the development of novel biomarkers may enhance the accuracy of the diagnosis at an early stage of the disease and allow effective intervention. Over the past decade, progress has been made in exploring the potential role of noncoding RNAs (ncRNAs) in the regulation of gene networks involved in metabolic diseases. A growing body of evidence now suggests that aberrant expression of circular RNAs (circRNAs) is relevant to the occurrence and development of metabolic diseases. Accordingly, circRNAs are proposed as predictive biomarkers and potential therapeutic targets for these diseases. As the field of circRNAs is rapidly evolving and knowledge is increasing, the present paper provides current understanding of the regulatory roles of these RNA species mainly in the pathogenesis of DM, NAFLD and obesity. Furthermore, some of the limitations to the promise of circRNAs and perspectives on their future research are discussed.

Keywords

Circular RNAs (circRNAs) Metabolic Diseases  Diabetes  NAFLD  Obesity  Epigenetics  Noncoding RNAs (ncRNAs) 

References

  1. 1.
    Stegemann R, Buchner DA (2015) Transgenerational inheritance of metabolic disease. Semin Cell Dev Biol 43:131–140PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21(2):243–251PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Sales VM, Ferguson-Smith AC, Patti ME (2017) Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metab 25(3):559–571PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Barrès R, Zierath JR (2017) The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat Rev Endocrinol 12(8):441–451CrossRefGoogle Scholar
  5. 5.
    Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9(9):513–521PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tang Y, Zhou T, Yu X, Xue Z, Shen N (2017) The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol 13(11):657–669PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Gangwar RS, Rajagopalan S, Natarajan R, Deiuliis JA (2018) Noncoding RNAs in cardiovascular disease: pathological relevance and emerging role as biomarkers and therapeutics. Am J Hypertens 31(2):150–165PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Zaiou M, El Amri H, Bakillah A (2018) The clinical potential of adipogenesis and obesity-related microRNAs. Nutr Metab Cardiovasc Dis 28(2):91–111PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Zaiou M, Bakillah A (2018) Epigenetic regulation of ATP-Binding Cassette Protein A1 (ABCA1) gene expression: a new era to alleviate atherosclerotic cardiovascular disease. Diseases 6(2). pii: E34. doi:  https://doi.org/10.3390/diseases6020034
  10. 10.
    Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH et al (2015) Exon circularization requires canonical splice signals. Cell Rep 10(1):103–111PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17(4):205–211PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y (2016) Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 44(3):1370–1383PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Dragomir M, Calin GA (2018) Circular RNAs in cancer - lessons learned from microRNAs. Front Oncol 8:179.  https://doi.org/10.3389/fonc.2018.00307CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li X, Yang L, Chen LL (2018) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71(3):428–442PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Xu Y (2017) An overview of the main circRNA databases. Non-coding RNA Investig 1:22.  https://doi.org/10.21037/ncri.2017.11.05CrossRefGoogle Scholar
  18. 18.
    Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733.  https://doi.org/10.1371/journal.pone.0030733CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409.  https://doi.org/10.1186/s13059-014-0409-zCrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777.  https://doi.org/10.1371/journal.pone.0030733CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD et al (1991) Scrambled exons. Cell 64(3):607–613PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Maass PG, Glažar P, Memczak, Dittmar G, Hollfinger I, Schreyer L et al (2017) A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl) 95(11):1179–1189CrossRefGoogle Scholar
  26. 26.
    Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Li Z, Huang C, Bao C, Chen L, Lin M, Wang X et al (2018) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264CrossRefGoogle Scholar
  28. 28.
    Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hentze MW, Preiss T (2013) Circular RNAs: splicing’s enigma variations. EMBO J 32(7):923–925PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Du WW, Zhang C, Yang W, Yong T, Awan FM, Yang BB (2017) Identifying and characterizing circRNA-protein interaction. Theranostics 7(17):4183–4191PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F et al (2018) Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer 17(1):79.  https://doi.org/10.1186/s12943-018-0827-8CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li M, Ding W, Sun T, Tariq MA, Xu T, Li P et al (2018) Biogenesis of circular RNAs and their roles in cardiovascular development and pathology. FEBS J 285(2):220–232PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Floris G, Zhang L, Follesa P, Sun T (2017) Regulatory role of circular RNAs and neurological disorders. Mol Neurobiol 54(7):5156–5165PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81–S90CrossRefGoogle Scholar
  35. 35.
    Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383(9922):1068–1083PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Shlomai G, Neel B, LeRoith D, Gallagher EJ (2016) Type 2 diabetes mellitus and cancer: the role of pharmacotherapy. J Clin Oncol 34(35):4261–4269PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Rines AK, Sharabi K, Tavares CD, Puigserver P (2016) Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov 15(11):786–804PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zaiou M, El Amri H (2017) Cardiovascular pharmacogenetics: a promise for genomically-guided therapy and personalized medicine. Clin Genet 91(3):355–370PubMedCrossRefGoogle Scholar
  39. 39.
    Leung A, Natarajan R (2018) Long noncoding RNAs in diabetes and diabetic complications. Antioxid Redox Signal 29(11):1064–1073PubMedCrossRefGoogle Scholar
  40. 40.
    Xu H, Guo S, Li W, Yu P (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453.  https://doi.org/10.1038/srep12453CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Stoll L, Sobel J, Rodriguez-Trejo A, Guay C, Lee K, Venø MT et al (2018) Circular RNAs as novel regulators of β-cell functions in normal and disease conditions. Mol Metab 9:69–83PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Zhao Z, Li X, Jian D, Hao P, Rao L, Li M (2017) Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol 54(3):237–245PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sena CM, Pereira AM, Seiça R (2013) Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim Biophys Acta 1832(12):2216–2231PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Shan K, Liu C, Liu BH, Chen X, Dong R, Liu X et al (2017) Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 136(17):1629–1642PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Zhang SJ, Chen X, Li CP, Li XM, Liu C, Liu BH et al (2017) Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy. Invest Ophthalmol Vis Sci 58(14):6500–6509PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Tang CM, Zhang M, Huang L, Hu ZQ, Zhu JN, Xiao Z et al (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 7:40342.  https://doi.org/10.1038/srep40342CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K et al (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55(6):2005–2023PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Michelotti GA, Machado MV, Diehl AM (2013) NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol 10(11):656–665PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Adams LA, Angulo P, Lindor KD (2005) Nonalcoholic fatty liver disease. CMAJ 172(7):899–905PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Lucas C, Lucas G, Lucas N, Krzowska-Firych J, Tomasiewicz K (2018) A systematic review of the present and future of non-alcoholic fatty liver disease. Clin Exp Hepatol 4(3):165–174PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Loomba R, Sanyal AJ (2013) The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 10(11):686–690PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Rinella ME (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA 313(22):2263–2273PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Gholam PM, Kotler DP, Flancbaum LJ (2002) Liver pathology in morbidly obese patients undergoing Roux-en-Y gastric bypass surgery. Obes Surg 12(1):49–51PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Williamson RM, Price JF, Glancy S, Perry E, Nee LD, Hayes PC et al (2011) Prevalence of and risk factors for hepatic steatosis and nonalcoholic Fatty liver disease in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes Care 34(5):1139–1144PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K et al (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Am J Gastroenterol 107(6):811–826PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52(5):1836–1846PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65(8):1038–1048PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Peverill W, Powell LW, Skoien R (2014) Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 15(5):8591–8638PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346(16):1221–1231CrossRefGoogle Scholar
  60. 60.
    Torres JL, Novo-Veleiro I, Manzanedo L, Alvela-Suárez L, Macías R, Laso FJ et al (2018) Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J Gastroenterol 24(36):4104–4118PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Szabo G, Csak T (2016) Role of MicroRNAs in NAFLD/NASH. Dig Dis Sci 61(5):1314–1324PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Liu CH, Ampuero J, Gil-Gómez A, Gil-Gómez A, Montero-Vallejo R, Rojas Á et al (2018) miRNAs in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol 69(6):1335–1348PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L (2011) Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One 6(8):e23937.  https://doi.org/10.1371/journal.pone.0023937CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Salvoza NC, Klinzing DC, Gopez-Cervantes J, Baclig MO (2016) Association of circulating serum miR-34a and miR-122 with dyslipidemia among patients with non-alcoholic fatty liver disease. PLoS One 11(4):e0153497.  https://doi.org/10.1371/journal.pone.0153497CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Francque S, Verrijken A, Caron S, Prawitt J, Paumelle R, Derudas B et al (2015) PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J Hepatol 63(1):164–173PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Huang K, Du M, Tan X, Yang L, Li X, Jiang Y et al (2017) PARP1-mediated PPARα poly(ADP-ribosyl)ation suppresses fatty acid oxidation in non-alcoholic fatty liver disease. J Hepatol 66(5):962–977PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Guo XY, Chen JN, Sun F, Wang YQ, Pan Q, Fan JG (2017) circRNA_0046367 prevents hepatoxicity of lipid peroxidation: an inhibitory role against hepatic steatosis. Oxidative Med Cell Longev 2017:3960197.  https://doi.org/10.1155/2017/3960197CrossRefGoogle Scholar
  69. 69.
    Guo XY, Sun F, Chen JN, Wang YQ, Pan Q, Fan JG (2018) circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling. World J Gastroenterol 24(3):323–337PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Guo XY, He CX, Wang YQ, Sun C, Li GM, Su Q et al (2017) Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis. Biomed Res Int 2017:5936171–5936113.  https://doi.org/10.1155/2017/5936171CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Li P, Shan K, Liu Y, Zhang Y, Xu L, Xu L (2018) CircScd1 promotes fatty liver disease via the Janus Kinase 2/signal transducer and activator of transcription 5 pathway. Dig Dis Sci Sep 27.  https://doi.org/10.1007/s10620-018-5290-2. [Epub ahead of print]
  72. 72.
    James PT, Leach R, Kalamara E, Shayeghi M (2001) The worldwide obesity epidemic. Obes Res 9(Suppl 4):228S–233SPubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Loos RJ, Bouchard C (2008) FTO: the first gene contributing to common forms of human obesity. Obes Rev 9:246–250PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Rojas J, Arraiz N, Aguirre M, Velasco M, Bermúdez V (2011) AMPK as target for intervention in childhood and adolescent obesity. J Obes 2011:252817.  https://doi.org/10.1155/2011/252817CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS et al (2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289(1):76–79PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Lloyd-Jones D et al (2013) Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of The Obesity Society and the American Society of Hypertension. J Clin Hypertens (Greenwich) 15(1):14–33CrossRefGoogle Scholar
  77. 77.
    Hilton C, Neville MJ, Karpe F (2013) MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes 37(3):325–332CrossRefGoogle Scholar
  78. 78.
    Wang R, Hong J, Cao Y, Shi J, Gu W, Ning G et al (2015) Elevated circulating microRNA-122 is associated with obesity and insulin resistance in young adults. Eur J Endocrinol 172(3):291–300PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B (2010) Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet 6(4):e1000899.  https://doi.org/10.1371/journal.pgen.1000899CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kong Y, Sharma RB, Nwosu BU, Alonso LC (2016) Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia 59(8):1579–1593PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Tajbakhsh A, Khorrami MS, Hassanian SM, Aghasizade M, Pasdar A, Maftouh M et al (2016) The 9p21 locus and its potential role in atherosclerosis susceptibility; molecular mechanisms and clinical implications. Curr Pharm Des 22(37):5730–5737PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Murray R, Bryant J, Titcombe P, Barton SJ, Inskip H, Harvey NC et al (2016) DNA methylation at birth within the promoter of ANRIL predicts markers of cardiovascular risk at 9 years. Clin Epigenetics 8:90.  https://doi.org/10.1186/s13148-016-0259-5CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lillycrop K, Murray R, Cheong C, Teh AL, Clarke-Harris R, Barton S et al (2017) ANRIL promoter DNA methylation: a perinatal marker for later adiposity. EBioMedicine 19:60–72PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Carrara M, Fuschi P, Ivan C, Martelli F (2018) Circular RNAs: methodological challenges and perspectives in cardiovascular diseases. J Cell Mol Med 22(11):5176–5187PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Li A, Huang W, Zhang X, Xie L, Miao X (2018) Identification and characterization of CircRNAs of two pig breeds as a new biomarker in metabolism-related diseases. Cell Physiol Biochem 47(6):2458–2470PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Wang T, Li M, Guan J, Li P, Wang H, Guo Y et al (2011) MicroRNAs miR-27a and miR-143 regulate porcine adipocyte lipid metabolism. Int J Mol Sci 12(11):7950–7959PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW et al (2010) miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 392(3):323–328PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E et al (2013) Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci U S A 110(9):3387–3392PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Zaiou M, Rihn BH, Bakillah A (2018) Epigenetic regulation of genes involved in the reverse cholesterol transport through interaction with miRNAs. Front Biosci (Landmark Ed) 23:2090–2105CrossRefGoogle Scholar
  90. 90.
    Chen Z (2015) Progress and prospects of long noncoding RNAs in lipid homeostasis. Mol Metab 5(3):164–170PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Motawi TK, Shaker OG, Ismail MF, Sayed NH (2017) Peroxisome proliferator-activated receptor gamma in obesity and colorectal cancer: the role of epigenetics. Sci Rep 7(1):10714.  https://doi.org/10.1038/s41598-017-11180-6CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S et al (2011) miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 31(4):626–638PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Yang Z, Bian C, Zhou H, Huang S, Wang S, Liao L et al (2011) MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev 20(2):259–267PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Deng YY, Zhang W, She J, Zhang L, Chen T, Zhou J et al (2016) Circular RNA related to PPARγ function as ceRNA of microRNA in human acute myocardial infarction. J Am Coll cardiol 68(16) Supp S.  https://doi.org/10.1016/j.jacc.2016.07.189
  95. 95.
    Gao W, He HW, Wang ZM, Zhao H, Lian XQ, Wang YS et al (2012) Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis 11:55.  https://doi.org/10.1186/1476-511X-11-55CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Zambrano T, Hirata RDC, Hirata MH, Cerda Á, Salazar LA (2018) Statins differentially modulate microRNAs expression in peripheral cells of hyperlipidemic subjects: a pilot study. Eur J Pharm Sci 117:55–61PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Boeckel JN, Thome CE, Leistner D, Zeiher AM, Fichtlscherer S, Dimmeler S (2013) Heparin selectively affects the quantification of micrornas in human blood samples. Clin Chem 59(7):1125–1127PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    de Boer HC, van Solingen C, Prins J, Duijs JM, Huisman MV, Rabelink TJ et al (2013) Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J 34(44):3451–3457PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Wagh A, Stone NJ (2004) Treatment of metabolic syndrome. Expert Rev Cardiovasc Ther 2(2):213–228PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25:981–984PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Li S, Li Y, Chen B, Zhao J, Yu S, Tang Y et al (2018) exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res 46(D1):D106–D112PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Valadi H, Ekstrom K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Castaño C, Kalko S, Novials A, Párrizas M (2018) Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci USA Nov 14. pii: 201808855.  https://doi.org/10.1073/pnas.1808855115. [Epub ahead of print]
  104. 104.
    Fang Y, Wang X, Li W, Han J, Jin J, Su F et al (2018) Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. Int J Mol Med 42(4):1865–1874PubMedPubMedCentralGoogle Scholar
  105. 105.
    Li X, Zhao Z, Jian D, Li W, Tang H, Li M (2017) Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus. Diab Vasc Dis Res 14(6):510–515PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Lorraine, School of PharmacyVandoeuvre les Nancy CedexFrance

Personalised recommendations