Advertisement

Future Developments of Sonography

  • Hans J. Welkoborsky
Chapter

Abstract

Ultrasonography and its related techniques, such as elastography, contrast-enhanced ultrasonography, targeted therapy, and molecular imaging, are emerging techniques that will improve both the diagnostic accuracy and indications for ultrasound applications in the future. Of the numerous advances and promising developments in ultrasonography, this chapter will focus on the detailed discussion of new developments in data acquisition by matrix transducers, three- and four-dimensional ultrasound, computerized analysis and diagnosis, molecular imaging, targeted therapy with application of ultrasound, and real-time elastography (strain elastography as well as shear wave elastography). This chapter describes each issue and briefly discusses its potential future application in and impact on clinical medicine.

Keywords

Ultrasound future Matrix transducers Computerized analysis Molecular imaging Targeted therapy Real-time elastography 

References

  1. 1.
    Vizzutti F, Arena U, Marra F, Pinzani M. Elastography for the non-invasive assessment of liver disease: limitations and future developments. Gut. 2009;58:157–60.CrossRefGoogle Scholar
  2. 2.
    Ohana M, Moser T, Moussaouï A, Kremer S, Carlier RY, Liverneaux P, Dietemann JL. Current and future imaging of the peripheral nervous system. Diagn Interv Imaging. 2014;95:17–26.CrossRefGoogle Scholar
  3. 3.
    Kang ST, Yeh CK. Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design. Chang Gung Med J. 2012;35:125–39.PubMedGoogle Scholar
  4. 4.
    Deshpande N, Needles A, Willmann JK. Molecular ultrasound imaging: current status and future directions. Clin Radiol. 2010;65:567–81.CrossRefGoogle Scholar
  5. 5.
    Oyen WJ, Bodei L, Giammarile F, Maecke HR, Tennvall J, Luster M, Brans B. Targeted therapy in nuclear medicine--current status and future prospects. Ann Oncol. 2007;18:1782–92.CrossRefGoogle Scholar
  6. 6.
    Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61:102–19.CrossRefGoogle Scholar
  7. 7.
    Janvier MA, Merouche S, Allard L, Soulez G, Cloutier G. A 3-D ultrasound imaging robotic system to detect and quantify lower limb arterial stenoses: in vivo feasibility. Ultrasound Med Biol. 2014;40:232–43.CrossRefGoogle Scholar
  8. 8.
    Ten Kate GL, van den Oord SC, Sijbrands EJ, van der Lugt A, de Jong N, Bosch JG, et al. Current status and future developments of contrast-enhanced ultrasound of carotid atherosclerosis. J Vasc Surg. 2013;57:539–46.CrossRefGoogle Scholar
  9. 9.
    Dietrich CF, Săftoiu A, Jenssen C. Real time elastography endoscopic ultrasound (RTE-EUS), a comprehensive review. Eur J Radiol. 2014;83:405–14.CrossRefGoogle Scholar
  10. 10.
    Tsui PH, Wan YL, Chen CK. Ultrasound imaging of the larynx and vocal folds: recent applications and developments. Curr Opin Otolaryngol Head Neck Surg. 2012;20:437–42.CrossRefGoogle Scholar
  11. 11.
    Imamura T, Kurita K, Shikata H, Kawagishi T. Evolution and revolution of system architecture with new generation technology. In: Medical review, Toshiba Medical Systems;2016:1–5 https://mfl.ssl.cdn.sdlmedia.com/636364554593809137UQ.pdf.
  12. 12.
    Desailly Y, Pierre J, Couture O, Tanter M. Resolution limits of ultrafast ultrasound localization microscopy. Phys Med Biol. 2015;60:8723–40.CrossRefGoogle Scholar
  13. 13.
    La Torre R, Bevilacqua E, D’Ambrosio V, Pasquali G, Aliberti C, Ventriglia F, Giancotti A. Matrix array transducer for the examination of fetal heart. Clin Exp Obstet Gynecol. 2014;41:581–2.Google Scholar
  14. 14.
    Wigen MS, Fadnes S, Rodriguez-Molares A, Bjastad T, Eriksen M, Stensaeth KH, et al. 4D Intracardiac ultrasound vector flow imaging--feasibility and comparison to phase-contrast MRI. IEEE Trans Med Imaging. 2018.  https://doi.org/10.1109/TMI.2018.2844552 [Epub ahead of print].CrossRefGoogle Scholar
  15. 15.
    Yu Z, Blaak S, Chang ZY, Yao J, Bosch JG, Prins C, et al. Front-end receiver electronics for a matrix transducer for 3-D transesophageal echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59:1500–2.CrossRefGoogle Scholar
  16. 16.
    Gennisson JL, Provost J, Deffieux T, Papadacci C, Imbault M, Pernot M, Tanter M. 4-D ultrafast shear-wave imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62:1059–65.CrossRefGoogle Scholar
  17. 17.
    Wang M, Byram B, Palmeri M, Rouze N, Nightingale K. On the precision of time-of- flight shear wave speed estimation in homogeneous soft solids: initial results using a matrix array transducer. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:758–70.CrossRefGoogle Scholar
  18. 18.
    Wang H, Kaneko OF, Tian L, Hristov D, Willmann JK. Three-dimensional ultrasound molecular imaging of angiogenesis in colon cancer using a clinical matrix array ultrasound transducer. Investig Radiol. 2015;50:322–9.CrossRefGoogle Scholar
  19. 19.
    Baghirov H, Snipstad S, Sulheim E, Berg S, Hansen R, Thorsen F, et al. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model. PLoS One. 2018;13:e0191102.CrossRefGoogle Scholar
  20. 20.
    Ma R, Zhou X, Zhang S, Yin T, Liu Z. A 3D reconstruction algorithm for magneto- acoustic tomography with magnetic induction based on ultrasound transducer characteristics. Phys Med Biol. 2016;61:8762–78.CrossRefGoogle Scholar
  21. 21.
    Lindsey BD, Smith SW. Refraction correction in 3D transcranial ultrasound imaging. Ultrason Imaging. 2014;36:35–54.CrossRefGoogle Scholar
  22. 22.
    Männicke N, Schöne M, Gottwald M, Göbel F, Oelze ML, Raum K. 3-D high- frequency ultrasound backscatter analysis of human articular cartilage. Ultrasound Med Biol. 2014;40:244–57.CrossRefGoogle Scholar
  23. 23.
    Reinhardt CJ, Chan J. Development of photoacoustic probes for in vivo molecular imaging. Biochemistry. 2018;57:194–9.CrossRefGoogle Scholar
  24. 24.
    Fenster A, Landry A, Downey DB, Hegele RA, Spence JD. 3D ultrasound imaging of the carotid arteries. Curr Drug Targets Cardiovasc Haematol Disord. 2004;4:161–75.CrossRefGoogle Scholar
  25. 25.
    Fenster A, Bax J, Neshat H, Cool D, Kakani N, Romagnoli C. 3D ultrasound imaging in image-guided intervention. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:6151–4.PubMedGoogle Scholar
  26. 26.
    Gebhard RE, Eubanks TN, Meeks R. Three-dimensional ultrasound imaging. Curr Opin Anaesthesiol. 2015;28:583–7.CrossRefGoogle Scholar
  27. 27.
    Yeom E, Nam KH, Jin C, Paeng DG, Lee SJ. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images. Ultrasonics. 2014;54:2184–92.CrossRefGoogle Scholar
  28. 28.
    Wang Y, Erpelding TN, Jankovic L, Guo Z, Robert JL, David G, Wang LV. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe. J Biomed Opt. 2012;17:061208.CrossRefGoogle Scholar
  29. 29.
    Provost J, Papadacci C, Arango JE, Imbault M, Fink M, Gennisson JL, et al. 3D ultrafast ultrasound imaging in vivo. Phys Med Biol. 2014;59:L1–13.CrossRefGoogle Scholar
  30. 30.
    Lee Y, Kang J, Yoo Y. Automatic dynamic range adjustment for ultrasound B-mode imaging. Ultrasonics. 2015;56:435–43.CrossRefGoogle Scholar
  31. 31.
    Pooh RK, Maeda K, Kurjak A, Sen C, Ebrashy A, Adra A, et al. 3D/4D sonography - any safety problem. J Perinat Med. 2016;44:125–9.PubMedGoogle Scholar
  32. 32.
    Or DY, Karmakar MK, Lam GC, Hui JW, Li JW, Chen PP. Multiplanar 3D ultrasound imaging to assess the anatomy of the upper airway and measure the subglottic and tracheal diameters in adults. Br J Radiol. 2013;86:20130253.CrossRefGoogle Scholar
  33. 33.
    Burton P, Deng J, McDonald D, Fewtrell MS. Real-time 3D ultrasound imaging of infant tongue movements during breast-feeding. Early Hum Dev. 2013;89:635–41.CrossRefGoogle Scholar
  34. 34.
    Long JA, Daanen V, Moreau-Gaudry A, Troccaz J, Rambeaud JJ, Descotes JL. Prostate biopsies guided by three-dimensional real-time (4-D) transrectal ultrasonography on a phantom: comparative study versus two-dimensional transrectal ultrasound-guided biopsies. Eur Urol. 2007;52:1097–104.CrossRefGoogle Scholar
  35. 35.
    Schalk SG, Demi L, Smeenge M, Mills DM, Wallace KD, de la Rosette JJ, et al. 4-D spatiotemporal analysis of ultrasound contrast agent dispersion for prostate cancer localization: a feasibility study. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62:839–51.CrossRefGoogle Scholar
  36. 36.
    Igase K, Kumon Y, Matsubara I, Arai M, Goishi J, Watanabe H, et al. Utility of 3-dimensional ultrasound imaging to evaluate carotid artery stenosis: comparison with magnetic resonance angiography. J Stroke Cerebrovasc Dis. 2015;24:148–53.CrossRefGoogle Scholar
  37. 37.
    Chiu B, Shamdasani V, Entrekin R, Yuan C, Kerwin WS. Characterization of carotid plaques on 3-dimensional ultrasound imaging by registration with multicontrast magnetic resonance imaging. J Ultrasound Med. 2012;31:1567–80.CrossRefGoogle Scholar
  38. 38.
    Hendriks GA, Holländer B, Menssen J, Milkowski A, Hansen HH, de Korte CL. Automated 3D ultrasound elastography of the breast: a phantom validation study. Phys Med Biol. 2016;61:2665–79.CrossRefGoogle Scholar
  39. 39.
    Kumagai K, Koike H, Nagaoka R, Sakai S, Kobayashi K, Saijo Y. High-resolution ultrasound imaging of human skin in vivo by using three-dimensional ultrasound microscopy. Ultrasound Med Biol. 2012;38:1833–8.CrossRefGoogle Scholar
  40. 40.
    Yang L, Wang J, Ando T, Kubota A, Yamashita H, Sakuma I, et al. Vision-based endoscope tracking for 3D ultrasound image-guided surgical navigation. Comput Med Imaging Graph. 2015;40:205–16.CrossRefGoogle Scholar
  41. 41.
    Thomas KN, Lewis NC, Hill BG, Ainslie PN. Technical recommendations for the use of carotid duplex ultrasound for the assessment of extracranial blood flow. Am J Physiol Regul Integr Comp Physiol. 2015;309:R707–20.CrossRefGoogle Scholar
  42. 42.
    Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound elastography and MR elastography for assessing liver fibrosis: part 2, diagnostic performance, confounders, and future directions. AJR Am J Roentgenol. 2015;205:33–40.CrossRefGoogle Scholar
  43. 43.
    Huang Q, Zhang F, Li X. Machine learning in ultrasound computer-aided diagnostic systems: a survey. Biomed Res Int. 2018;2018:5137904.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A. Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. Br J Radiol. 2018;91:20170576.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Rodríguez-Cristerna A, Gómez-Flores W, de Albuquerque Pereira WC. A computer- aided diagnosis system for breast ultrasound based on weighted BI-RADS classes. Comput Methods Prog Biomed. 2018;153:33–40.CrossRefGoogle Scholar
  46. 46.
    Agarwal R, Diaz O, Lladó X, Gubern-Mérida A, Vilanova JC, Martí R. Lesion segmentation in automated 3D breast ultrasound: volumetric analysis. Ultrason Imaging. 2018;40:97–112.CrossRefGoogle Scholar
  47. 47.
    Tranquart F, Arditi M, Bettinger T, Frinking P, Hyvelin JM, Nunn A, et al. Ultrasound contrast agents for ultrasound molecular imaging. Z Gastroenterol. 2014;52:1268–76.CrossRefGoogle Scholar
  48. 48.
    Abou-Elkacem L, Bachawal SV, Willmann JK. Ultrasound molecular imaging: moving toward clinical translation. Eur J Radiol. 2015;84:1685–93.CrossRefGoogle Scholar
  49. 49.
    Yeh JS, Sennoga CA, McConnell E, Eckersley R, Tang MX, Nourshargh S, et al. Quantitative ultrasound molecular imaging. Ultrasound Med Biol. 2015;41:2478–96.CrossRefGoogle Scholar
  50. 50.
    van Rooij T, Daeichin V, Skachkov I, de Jong N, Kooiman K. Targeted ultrasound contrast agents for ultrasound molecular imaging and therapy. Int J Hyperth. 2015;31:90–106.CrossRefGoogle Scholar
  51. 51.
    Ibsen S, Shi G, Schutt C, Shi L, Suico KD, Benchimol M, et al. The behavior of lipid debris left on cell surfaces from microbubble based ultrasound molecular imaging. Ultrasonics. 2014;54:2090–8.CrossRefGoogle Scholar
  52. 52.
    Yeh JS, Sennoga CA, McConnell E, Eckersley R, Tang MX, Nourshargh S, et al. A targeting microbubble for ultrasound molecular imaging. PLoS One. 2015;10:e0129681.CrossRefGoogle Scholar
  53. 53.
    Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target. 2018;26:420–34.CrossRefGoogle Scholar
  54. 54.
    Boustani AM, Pucar D, Saperstein L. Molecular imaging of prostate cancer. Br J Radiol. 2018;91:20170736.CrossRefGoogle Scholar
  55. 55.
    Ahmed S, Strand S, Weinmann-Menke J, Urbansky L, Galle PR, Neumann H. Molecular endoscopic imaging in cancer. Dig Endosc. 2018.  https://doi.org/10.1111/den.13199 [Epub ahead of print].CrossRefGoogle Scholar
  56. 56.
    Zlitni A, Gambhir SS. Molecular imaging agents for ultrasound. Curr Opin Chem Biol. 2018;45:113–20.CrossRefGoogle Scholar
  57. 57.
    Gross D, Coutier C, Legros M, Bouakaz A, Certon D. A cMUT probe for ultrasound- guided focused ultrasound targeted therapy. IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62:1145–60.CrossRefGoogle Scholar
  58. 58.
    Ninomiya K, Noda K, Ogino C, Kuroda S, Shimizu N. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: its application to targeted sonodynamic therapy. Ultrason Sonochem. 2014;21:289–94.CrossRefGoogle Scholar
  59. 59.
    Yang F, Chen ZY, Lin Y. Advancement of targeted ultrasound contrast agents and their applications in molecular imaging and targeted therapy. Curr Pharm Des. 2013;19:1516–27.PubMedGoogle Scholar
  60. 60.
    Yang C, Li Y, Du M, Chen Z. Recent advances in ultrasound-triggered therapy. J Drug Target. 2018;27:1–18.  https://doi.org/10.1080/1061186X.2018.1464012.. [Epub ahead of print]CrossRefGoogle Scholar
  61. 61.
    Qian L, Thapa B, Hong J, Zhang Y, Zhu M, Chu M, et al. The present and future role of ultrasound targeted microbubble destruction in preclinical studies of cardiac gene therapy. J Thorac Dis. 2018;10:1099–111.CrossRefGoogle Scholar
  62. 62.
    Liang Y, Chen J, Zheng X, Chen Z, Liu Y, Li S, Fang X. Ultrasound-mediated kallidinogenase-loaded microbubble targeted therapy for acute cerebral infarction. J Stroke Cerebrovasc Dis. 2018;27:686–96.CrossRefGoogle Scholar
  63. 63.
    Wu M, Zhao H, Guo L, Wang Y, Song J, Zhao X, et al. Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of A10-3.2 aptamer targeted and siRNA-loaded cationic nanobubbles for therapy of prostate cancer. Drug Deliv. 2018;25:226–40.CrossRefGoogle Scholar
  64. 64.
    Phenix CP, Togtema M, Pichardo S, Zehbe I, Curiel L. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharm Sci. 2014;17:136–53.CrossRefGoogle Scholar
  65. 65.
    Jenne JW, Preusser T, Günther M. High-intensity focused ultrasound: principles, therapy guidance, simulations and applications. Z Med Phys. 2012;22:311–22.CrossRefGoogle Scholar
  66. 66.
    Wu F. High intensity focused ultrasound: a noninvasive therapy for locally advanced pancreatic cancer. World J Gastroenterol. 2014;20:16480–8.CrossRefGoogle Scholar
  67. 67.
    Crouzet S, Rouviere O, Martin X, Gelet A. High-intensity focused ultrasound as focal therapy of prostate cancer. Curr Opin Urol. 2014;24:225–30.CrossRefGoogle Scholar
  68. 68.
    Zhang X, Zheng Y, Wang Z, Huang S, Chen Y, Jiang W, et al. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials. 2014;35:5148–61.CrossRefGoogle Scholar
  69. 69.
    Park MJ, Kim YS, Yang J, Sun WC, Park H, Chae SY, et al. Pulsed high-intensity focused ultrasound therapy enhances targeted delivery of cetuximab to colon cancer xenograft model in mice. Ultrasound Med Biol. 2013;39:292–9.CrossRefGoogle Scholar
  70. 70.
    Apfelbeck M, Clevert DA, Ricke J, Stief C, Schlenker B. Contrast enhanced ultrasound (CEUS) with MRI image fusion for monitoring focal therapy of prostate cancer with high intensity focused ultrasound (HIFU)1. Clin Hemorheol Microcirc. 2018;69:93–100.CrossRefGoogle Scholar
  71. 71.
    Rix A, Lederle W, Theek B, Lammers T, Moonen C, Schmitz G, Kiessling F. Advanced ultrasound technologies for diagnosis and therapy. J Nucl Med. 2018;59:740–6.CrossRefGoogle Scholar
  72. 72.
    Noble ML, Kuhr CS, Graves SS, Loeb KR, Sun SS, Keilman GW, et al. Ultrasound-targeted microbubble destruction-mediated gene delivery into canine livers. Mol Ther. 2013;21:1687–94.CrossRefGoogle Scholar
  73. 73.
    Kennedy P, Wagner M, Castéra L, Hong CW, Johnson CL, Sirlin CB, Taouli B. Quantitative elastography methods in liver disease: current evidence and future directions. Radiology. 2018;286:738–63.CrossRefGoogle Scholar
  74. 74.
    Dietrich CF, Bibby E, Jenssen C, Saftoiu A, Iglesias-Garcia J, Havre RF. EUS elastography: how to do it? Endosc Ultrasound. 2018;7:20–8.CrossRefGoogle Scholar
  75. 75.
    Seo M, Ahn HS, Park SH, Lee JB, Choi BI, Sohn YM, Shin SY. Comparison and combination of strain and shear wave elastography of breast masses for differentiation of benign and malignant lesions by quantitative assessment: preliminary study. J Ultrasound Med. 2018;37:99–109.CrossRefGoogle Scholar
  76. 76.
    Roccarina D, Rosselli M, Genesca J, Tsochatzis EA. Elastography methods for the non-invasive assessment of portal hypertension. Expert Rev Gastroenterol Hepatol. 2018;12:155–64.CrossRefGoogle Scholar
  77. 77.
    Ahn HS, Lee JB, Seo M, Park SH, Choi BI. Distinguishing benign from malignant thyroid nodules using thyroid ultrasonography: utility of adding superb microvascular imaging and elastography. Radiol Med. 2018;123:260–70.CrossRefGoogle Scholar
  78. 78.
    Kuwahara T, Hirooka Y, Kawashima H, Ohno E, Ishikawa T, Yamamura T, et al. Usefulness of shear wave elastography as a quantitative diagnosis of chronic pancreatitis. J Gastroenterol Hepatol. 2018;33:756–61.CrossRefGoogle Scholar
  79. 79.
    You J, Chen J, Xiang F, Song Y, Khamis S, Lu C, et al. The value of quantitative shear wave elastography in differentiating the cervical lymph nodes in patients with thyroid nodules. J Med Ultrason (2001). 2018;45:251–9.CrossRefGoogle Scholar
  80. 80.
    Lima KMME, Costa Júnior JFS, Pereira WCA, Oliveira LF. Assessment of the mechanical properties of the muscle-tendon unit by supersonic shear wave imaging elastography: a review. Ultrasonography. 2018;37:3–15.CrossRefGoogle Scholar
  81. 81.
    Batur M, Batur A, Çilingir V, Seven E, Çinal A, Bora A, Yaşar T. Ultrasonic elastography evaluation in optic neuritis. Semin Ophthalmol. 2018;33:237–41.PubMedGoogle Scholar
  82. 82.
    McQueen AS, Bhatia KS. Head and neck ultrasound: technical advances, novel applications and the role of elastography. Clin Radiol. 2018;73:81–93.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hans J. Welkoborsky
    • 1
  1. 1.Department of Otorhinolaryngology, Head and Neck SurgeryKRH Nordstadt Clinic–Academic HospitalHannoverGermany

Personalised recommendations