# 20 Voting Procedures Designed to Elect a Single Candidate

Chapter

First Online:

## Abstract

20 voting procedures for electing a single candidate are introduced and briefly commented upon. The procedures fall into three classes in terms of the type of voter input and Condorcet consistency: non-ranked procedures, ranked procedures that are not Condorcet-consistent and ranked ones that are Condorcet-consistent. The first class consists of four procedures, the second consists of seven procedures and the third class consists of nine procedures.

## Keywords

Non-ranked voting procedures Ranked procedures Condorcet-consistent procedures## References

- Baldwin, J. M. (1926). The technique of the Nanson preferential majority system.
*Proceedings of the Royal Society of Victoria,**39,*42–52.Google Scholar - Balinski, M., & Laraki, R. (2007a). A theory of measuring, electing and ranking.
*Proceedings of the National Academy of Sciences of the United States of America (PNAS), 104*, 8720–8725.Google Scholar - Balinski, M., & Laraki, R. (2007b).
*Election by majority judgement: Experimental evidence, (mimeograph)*. Paris: Ecole Polytechnique, Centre National De La Recherche Scientifique, Laboratoire D’Econometrie, Cahier No. 2007–28. Downloadable from http://tinyurl.com/65q6cg. - Balinski, M., & Laraki, R. (2011).
*Majority judgment: Measuring, ranking, and electing*. Cambridge, MA: MIT Press.CrossRefGoogle Scholar - Black, D. (1958).
*The theory of committees and elections*. Cambridge: Cambridge University Press.Google Scholar - Brams, S. J., & Fishburn, P. C. (1978). Approval voting.
*American Political Science Review,**72,*831–847.CrossRefGoogle Scholar - Brams, S. J., & Fishburn, P. C. (1983).
*Approval voting*. Boston: Birkhäuser.Google Scholar - Coombs, C. H. (1964).
*A theory of data*. New York: Wiley.Google Scholar - Coombs, C. H., Cohen, J. L., & Chamberlin, J. R. (1984). An empirical study of some election systems.
*American Psychologist,**39,*140–157.CrossRefGoogle Scholar - Copeland, A. H. (1951).
*A ‘reasonable’ social welfare function, mimeographed*. University of Michigan, Department of Mathematics, Seminar on Applications of Mathematics to the Social Sciences.Google Scholar - de Borda, J.-C. (1784) [1995]. Mémoire sur les élections au scrutin.
*Histoire de l’Academie Royale des Sciences année*1781 (pp. 651–665). Paris. Reprinted and translated in I. McLean & A. B. Urken (1995),*Classics of social choice*(pp. 83–89). Ann Arbor, MI: University of Michigan Press.Google Scholar - Farquharson, R. (1969).
*Theory of voting*. New Haven, CT: Yale University Press.Google Scholar - Felsenthal, D. S. (2012). Review of paradoxes afflicting procedures for electing a single candidate. In D. S. Felsenthal & M. Machover (Eds.),
*Electoral systems: Paradoxes, assumptions, and procedures*(Ch. 3, pp. 19–92). Berlin Heidelberg: Springer.Google Scholar - Felsenthal, D. S., & Machover, M. (1992). After two centuries should Condorcet’s voting procedure be implemented?
*Behavioral Science,**37,*250–273.CrossRefGoogle Scholar - Felsenthal, D. S., & Nurmi, H. (2018).
*Voting procedures for electing a single candidate—Proving their (in)vulnerability to various voting procedures*. Cham, Switzerland: Springer.CrossRefGoogle Scholar - Fishburn, P. C. (1977). Condorcet social choice functions.
*SIAM Journal on Applied Mathematics,**33,*469–489.CrossRefGoogle Scholar - Hoag, C. G., & Hallett, G. H. (1926).
*Proportional representation*. New York: The Macmillan Co.Google Scholar - Kemeny, J. G., & Snell, J. L. (1960).
*Mathematical models in the social sciences*. Boston: Ginn.Google Scholar - Kramer, G. H. (1977). A dynamical model of political equilibrium.
*Journal of Economic Theory,**16,*310–333.CrossRefGoogle Scholar - Lepelley, D., Moyouwou, I., & Smaoui, H. (2018). Monotonicity paradoxes in three-candidate elections using scoring elimination rules.
*Social Choice and Welfare,**50,*1–33.CrossRefGoogle Scholar - McLean, I., & Urken, A. B. (1995).
*Classics of social choice*. Ann Arbor: University of Michigan Press.CrossRefGoogle Scholar - Nanson, E. J. (1883). Methods of elections.
*Transactions and Proceedings of the Royal Society of Victoria, 19*, 197–240. Also in I. McLean & A. B. Urken (Eds.),*Classics of social choice*(Ch. 14, pp. 321–359, 1995). University of Michigan Press.Google Scholar - Nurmi, H. (1989). On Nanson’s method. In O. Borg, O. Apunen, H. Hakovirta, & J. Paastela (Eds.),
*Democracy in the modern world. Essays for Tatu Vanhanen*, series A (Vol. 260, pp. 199–210). Tampere: Acta Universitatis Tamperensis.Google Scholar - Schultze, M. (2003). A new monotonic and clone-independent single-winner election method.
*Voting Counts, 17*, 9–19. Downloadable from: http://www.macdougall.org.uk/VM/ISSUE17/I17P3.PDF. - Schwartz, T. (1972). Rationality and the myth of the maximum.
*Noûs,**6,*97–117.CrossRefGoogle Scholar - Schwartz, T. (1986).
*The logic of collective choice*. New York: Columbia University Press.Google Scholar - Simpson, P. B. (1969). On defining areas of voter choice: Professor Tullock on stable voting.
*Quarterly Journal of Economics,**83,*478–490.CrossRefGoogle Scholar - Smith, W. D. (2000).
*Range voting*. Downloadable from: http://www.math.temple.edu/~wds/homepage/rangevote.pdf. - Straffin, P. D. (1980).
*Topics in the theory of voting*. Boston: Birkhäuser.Google Scholar - Tideman, T. N. (1987). Independence of clones as a criterion for voting rules.
*Social Choice and Welfare,**4,*185–206.CrossRefGoogle Scholar - Tideman, N. (2006).
*Collective decisions and voting: The potential for public choice*. Aldershot, Hampshire, England: Ashgate Publishing Ltd.Google Scholar - Young, H. P. (1977). Extending Condorcet’s rule.
*Journal of Economic Theory,**16,*335–353.CrossRefGoogle Scholar - Young, H. P. (1988). Condorcet’s theory of voting.
*American Political Science Review,**82,*1231–1244.CrossRefGoogle Scholar - Young, H. P. (1995). Optimal voting rules.
*Journal of Economic Perspectives,**9,*51–63.CrossRefGoogle Scholar - Young, H. P., & Levenglick, A. (1978). A consistent extension of Condorcet’s election principle.
*SIAM Journal of Applied Mathematics,**35,*283–300.CrossRefGoogle Scholar

## Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019