Advertisement

Nanocarbons-Supported and Polymers-Supported Titanium Dioxide Nanostructures as Efficient Photocatalysts for Remediation of Contaminated Wastewater and Hydrogen Production

  • Kakarla Raghava Reddy
  • M. S. Jyothi
  • A. V. Raghu
  • V. Sadhu
  • S. Naveen
  • Tejraj M. Aminabhavi
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 30)

Abstract

Organic contaminants (textile dyes, pesticides) in industrial wastewater have adverse effects on the environment and human health. Such environmental pollutants are resistant in the environment and are difficult to completely remove through treatment techniques. Therefore, titanium dioxide (TiO2) nanostructure-based photocatalytic processes have received much attention due to their environmentally green nature with high efficiency for complete photodegradation of organic pollutants to produce safe and clean water.

In this chapter, zero-dimensional to three-dimensional TiO2 nanostructures functionalized with various polymeric and nanocarbon hybrid materials are discussed as low-cost, nontoxic, and highly efficient photocatalytic materials for photodegradation of chemical pollutants, in comparison with pristine TiO2, through expansion of the visible light photoresponse and regulation of the bandgap properties of TiO2. Various chemical synthesis methods, surface modifications with various polymers and nanostructured carbons, compositions, morphological structures, growth mechanisms, physicochemical properties, electronic and optical characteristics, and photocatalytic mechanisms (e.g., reactive oxygen species generation) of various heterostructured TiO2-based photocatalysts are discussed in terms of their prospects and future challenges in the fields of photocatalytic environmental remediation and hydrogen generation.

Keywords

Photocatalysis TiO2 Nanocarbons Graphene Reduced graphene oxide Carbon nanotubes Conjugated polymers Hybrid photocatalysts Chemical synthesis Surface modification Morphology control Heterostructures Bandgap properties Photocatalytic mechanism Organic chemical pollutants Water treatment Organic dye degradation Environmental remediation Hydrogen evolution 

Abbreviations

λ

Wavelength (nm)

λmax

Specific wavelength maximum (nm)

1D

One-dimensional

2,4-D

2,4-Dichlorophenoxyacetic acid

2-CP

2-Chlorophenol

A

Absorbance

AC

Activated carbon

ALD

Atomic layer deposition

APS

Ammonium persulfate

B

Path length of sample (m)

BPA

Bisphenol A

C

Concentration (mol/m3)

C0

Initial concentration (mol/m3)

CB

Conduction band

CEPDA

Electrophoretic deposition–anodization

CFL

Compact fluorescent lamp

CNT

Carbon nanotube

COD

Chemical oxygen demand

CVD

Chemical vapor deposition

DSC

Digital scanning calorimeter

Ε

Molar absorptivity (m2/mol)

e

Electron

Eg

Bandgap energy

FE-SEM

Field emission scanning electron microscopy

FTIR

Fourier transform infrared

G

Graphene

GO

Graphene oxide

Η

Degree of photocatalytic degradation

h+

Hole

HOMO

Highest occupied molecular orbital

hv

Photon energy

K

Rate constant (min−1)

LED

Light-emitting diode

LUMO

Lowest unoccupied molecular orbital

MB

Methylene blue

MO

Methyl orange

MWCNT

Multiwalled carbon nanotube

P(3HB-co-3HHx)

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)

PAA

Poly(acrylic acid)

PANI

Polyaniline

PC

Polycarbonate

PE

Polythene

PET

Poly(ethylene terephthalate)

PMMA

Poly(methyl methacrylate)

PP

Polypropylene

PPF

Polypropylene fabric

PPy

Polypyrrole

PS

Polystyrene

PSP4VP

Poly(styrene)-co-poly(4-vinylpyridine)

PTh

Polythiophene

PVA

Poly(vinyl alcohol)

PVAc

Polyvinyl acetate

PVC

Polyvinyl chloride

PVDF

Poly(vinylidene difluoride)

R

Relative concentration

rGO

Reduced graphene oxide

RhB

Rhodamine B

SC

Semiconductor

SDS

Sodium dodecyl sulfate

SWCNT

Single-walled carbon nanotube

T

Time (min)

T

Transmittance

Tc

Crystallization temperature (K)

TCP

Transformer-coupled plasma

TEM

Transmission electron microscopy

Tg

Glass transition temperature (°C)

TGA

Thermogravimetric analyzer

UV

Ultraviolet

UV-Vis

Ultraviolet–visible

VB

Valence band

XRD

X-ray diffraction

References

  1. Abd El-Rehim HA, Hegazy E-SA, Diaa DA (2012) Photo-catalytic degradation of metanil yellow dye using TiO2 immobilized into polyvinyl alcohol/acrylic acid microgels prepared by ionizing radiation. React Funct Polym 72(11):823–831CrossRefGoogle Scholar
  2. Abdulla H, Abbo A (2012) Optical and electrical properties of thin films of polyaniline and polypyrrole. Int J Electrochem Sci 7:10666–10678Google Scholar
  3. Accorsi G, Armaroli N (2010) Taking advantage of the electronic excited states of [60]-fullerenes. J Phys Chem C 114(3):1385–1403CrossRefGoogle Scholar
  4. Ahmed T et al (2017) m-BiVO4 hollow spheres coated on carbon fiber with superior reusability as photocatalyst. Colloids Surf A Physicochem Eng Asp 531(Suppl C):213–220CrossRefGoogle Scholar
  5. Al-Nafiey A et al (2017) Nickel oxide nanoparticles grafted on reduced graphene oxide (rGO/NiO) as efficient photocatalyst for reduction of nitroaromatics under visible light irradiation. J Photochem Photobiol A Chem 336(Suppl C):198–207CrossRefGoogle Scholar
  6. Apostolopoulou V et al (2009) Preparation and characterization of [60] fullerene nanoparticles supported on titania used as a photocatalyst. Colloids Surf A Physicochem Eng Asp 349(1):189–194CrossRefGoogle Scholar
  7. Aryal S et al (2008) Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning. Mater Sci Eng C 28(1):75–79CrossRefGoogle Scholar
  8. Bai H, Liu Z, Sun DD (2012) The design of a hierarchical photocatalyst inspired by natural forest and its usage on hydrogen generation. Int J Hydrog Energy 37(19):13998–14008CrossRefGoogle Scholar
  9. Bailón-García E et al (2017) Development of carbon-ZrO2 composites with high performance as visible-light photocatalysts. Appl Catal B Environ 217(Suppl C):540–550CrossRefGoogle Scholar
  10. Ballav N, Biswas M (2003) Preparation and evaluation of a nanocomposite of polythiophene with Al2O3. Polym Int 52(1):179–184CrossRefGoogle Scholar
  11. Basavaraja C et al (2009) Transport properties of polypyrrole films doped with sulphonic acids. Bull Kor Chem Soc 30(11):2701–2706CrossRefGoogle Scholar
  12. Bhatkhande DS, Pangarkar VG, Beenackers AACM (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77(1):102–116CrossRefGoogle Scholar
  13. Brezová V et al (1994) Photocatalytic degradation of p-toluenesulphonic acid in aqueous systems containing powdered and immobilized titanium dioxide. J Photochem Photobiol A Chem 83(1):69–75CrossRefGoogle Scholar
  14. Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology—a technology for crystal growth and materials processing. William Andrew Publishing/Noyes, New YorkGoogle Scholar
  15. Byrne JA et al (1998) Immobilisation of TiO2 powder for the treatment of polluted water. Appl Catal B Environ 17(1):25–36CrossRefGoogle Scholar
  16. Cao Y-C et al (2015) Reduced graphene oxide supported titanium dioxide nanomaterials for the photocatalysis with long cycling life. Appl Surf Sci 355(Suppl C):1289–1294CrossRefGoogle Scholar
  17. Cardoso MJR, Lima MFS, Lenz DM (2007) Polyaniline synthesized with functionalized sulfonic acids for blends manufacture. Mater Res 10:425–429CrossRefGoogle Scholar
  18. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1):33–177CrossRefGoogle Scholar
  19. Chandra MR et al (2017) Hybrid copper doped titania/polythiophene nanorods as efficient visible light-driven photocatalyst for degradation of organic pollutants. J Asian Ceramic Soc 5:436–443CrossRefGoogle Scholar
  20. Chandrakanthi N, Careem MA (2000) Thermal stability of polyaniline. Polym Bull 44(1):101–108CrossRefGoogle Scholar
  21. Chang C-J, Wei Y-H, Huang K-P (2017) Photocatalytic hydrogen production by flower-like graphene supported ZnS composite photocatalysts. Int J Hydrog Energy 42(37):23578–23586CrossRefGoogle Scholar
  22. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRefGoogle Scholar
  23. Chen D et al (2007) Carbon and nitrogen Co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46(9):2741–2746CrossRefGoogle Scholar
  24. Cho S, Choi W (2001) Solid-phase photocatalytic degradation of PVC–TiO2 polymer composites. J Photochem Photobiol A Chem 143(2):221–228CrossRefGoogle Scholar
  25. Choudhury B, Dey M, Choudhury A (2013) Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int Nano Lett 3(1):25CrossRefGoogle Scholar
  26. Chougulea MA et al (2011) Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 1:6–10CrossRefGoogle Scholar
  27. Chung K-H et al (2017) Development of hydrogen production by liquid phase plasma process of water with NiTiO2/carbon nanotube photocatalysts. Int J Hydrog Energy 43(11):5873–5880CrossRefGoogle Scholar
  28. Cojocaru B et al (2009) Synergism of activated carbon and undoped and nitrogen-doped TiO2 in the photocatalytic degradation of the chemical warfare agents Soman, VX, and Yperite. ChemSusChem 2(5):427–436CrossRefGoogle Scholar
  29. Dai K et al (2014) Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation. Appl Catal B Environ 156-157(Suppl C):331–340CrossRefGoogle Scholar
  30. Dey A et al (2004) Characterization and dielectric properties of polyaniline–TiO2 nanocomposites. Nanotechnology 15(9):1277CrossRefGoogle Scholar
  31. Dhanya A, Aparna K (2016) Synthesis and evaluation of TiO2/chitosan based hydrogel for the adsorptional photocatalytic degradation of azo and anthraquinone dye under UV light irradiation. Procedia Technol 24(Suppl C):611–618CrossRefGoogle Scholar
  32. Di Valentin C, Pacchioni G, Selloni A (2005) Theory of carbon doping of titanium dioxide. Chem Mater 17(26):6656–6665CrossRefGoogle Scholar
  33. Fabiyi ME, Skelton RL (2000) Photocatalytic mineralisation of methylene blue using buoyant TiO2-coated polystyrene beads. J Photochem Photobiol A Chem 132(1):121–128CrossRefGoogle Scholar
  34. Fostier AH et al (2008) Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles. Chemosphere 72(2):319–324CrossRefGoogle Scholar
  35. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357CrossRefGoogle Scholar
  36. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37CrossRefGoogle Scholar
  37. Gao B, Chen GZ, Li Puma G (2009) Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl Catal B Environ 89(3):503–509CrossRefGoogle Scholar
  38. Gar Alalm M, Tawfik A, Ookawara S (2016) Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. J Environ Chem Eng 4(2):1929–1937CrossRefGoogle Scholar
  39. Gogate PR et al (2002) Mapping of sonochemical reactors: review, analysis, and experimental verification. Am Inst Chem Eng AICHE J 48(7):1542–1542CrossRefGoogle Scholar
  40. Grandcolas M, Ye J (2012) N-doped titania-based nanofiber thin films synthesized via a hydrothermal route and their photo-induced properties under visible light. J Ceram Process Res 13:65–70Google Scholar
  41. Guldi DM, Prato M (2000) Excited-state properties of C60 fullerene derivatives. Acc Chem Res 33(10):695–703CrossRefGoogle Scholar
  42. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56(16):1639CrossRefGoogle Scholar
  43. Han H, Bai R (2010) Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV–Vis and Vis lights. Sep Purif Technol 73(2):142–150CrossRefGoogle Scholar
  44. Han F et al (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359(1):25–40CrossRefGoogle Scholar
  45. Hao W, James PL (2005) Effects of dopant states on photoactivity in carbon-doped TiO2. J Phys Condens Matter 17(21):L209CrossRefGoogle Scholar
  46. Hartley AC et al (2017) PMMA–titania floating macrospheres for the photocatalytic remediation of agro-pharmaceutical wastewater. Water Sci Technol 75(6):1362–1369CrossRefGoogle Scholar
  47. Hegedűs P et al (2017) Investigation of a TiO2 photocatalyst immobilized with poly(vinyl alcohol). Catal Today 284(Suppl C):179–186CrossRefGoogle Scholar
  48. Herrmann J-M et al (1999) Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catal Today 54(2):255–265CrossRefGoogle Scholar
  49. Hiroshi I, Yuka W, Kazuhito H (2003) Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett 32(8):772–773CrossRefGoogle Scholar
  50. Hoffmann MR et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96CrossRefGoogle Scholar
  51. Hsieh S-H, Ting J-M (2018) Characterization and photocatalytic performance of ternary Cu-doped ZnO/graphene materials. Appl Surf Sci 427(Part A):465–475CrossRefGoogle Scholar
  52. Huo P et al (2018) Fabricated Ag/Ag2S/reduced graphene oxide composite photocatalysts for enhancing visible light photocatalytic and antibacterial activity. J Ind Eng Chem 57(Suppl C):125–133CrossRefGoogle Scholar
  53. Ibhadon A, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1):189CrossRefGoogle Scholar
  54. Ida J et al (2016) Preparation of highly functionalized thermoresponsive composites containing TiO2/Fe3O4 nanoparticles. Polym Compos 37(8):2293–2300CrossRefGoogle Scholar
  55. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56CrossRefGoogle Scholar
  56. Jamal R et al (2013) Comparison of structure and electrochemical properties for PANI/TiO2/G and PANI/G composites synthesized by mechanochemical route. J Mater Res 28(6):832–839CrossRefGoogle Scholar
  57. Justh N et al (2017) Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition. Appl Surf Sci 419(Suppl C):497–502CrossRefGoogle Scholar
  58. Jyothi MS et al (2016) Aminated polysulfone/TiO2 composite membranes for an effective removal of Cr(VI). Chem Eng J 283(Suppl C):1494–1505CrossRefGoogle Scholar
  59. Jyothi MS et al (2017a) Sunlight active PSf/TiO2 hybrid membrane for elimination of chromium. J Photochem Photobiol A Chem 339(Suppl C):89–94Google Scholar
  60. Jyothi MS et al (2017b) Eco-friendly membrane process and product development for complete elimination of chromium toxicity in wastewater. J Hazard Mater 332(Suppl C):112–123Google Scholar
  61. Kalousek V et al (2017) Low-cost Ni-complex/graphitic carbon nitride photocatalyst for hydrogen evolution. Mater Lett 199(Suppl C):65–67CrossRefGoogle Scholar
  62. Kamat PV (2011) Graphene-based nanoassemblies for energy conversion. J Phys Chem Lett 2(3):242–251CrossRefGoogle Scholar
  63. Kamat PV, Haria M, Hotchandani S (2004) C60 cluster as an electron shuttle in a Ru(II)-polypyridyl sensitizer-based photochemical solar cell. J Phys Chem B 108(17):5166–5170CrossRefGoogle Scholar
  64. Kavil J et al (2017) Polyaniline as photocatalytic promoter in black anatase TiO2. Sol Energy 158(Suppl C):792–796CrossRefGoogle Scholar
  65. Kelkar D, Chourasia A (2012) Effect of dopant on thermal properties of polythiophene. Indian J Phys 86(2):101–107CrossRefGoogle Scholar
  66. Kiran V, Sampath S (2013) Facile synthesis of carbon doped TiO2 nanowires without an external carbon source and their opto-electronic properties. Nanoscale 5(21):10646–10652CrossRefGoogle Scholar
  67. Kolouch A et al (2006) Relationship between photocatalytic activity, hydrophilicity and photoelectric properties of TiO2 thin films. Probl At Sci Technol 6(Plasma Physics (12)):198–200Google Scholar
  68. Krätschmer W et al (1990) Solid C60: a new form of carbon. Nature 347:354CrossRefGoogle Scholar
  69. Kumar D, Sharma RC (1998) Advances in conductive polymers. Eur Polym J 34(8):1053–1060CrossRefGoogle Scholar
  70. Kumar KD, Kumar GP, Reddy KS (2015) Rapid microwave synthesis of reduced graphene oxide–supported TiO2 nanostructures as high performance photocatalyst. Mater Today Proc 2(4):3736–3742CrossRefGoogle Scholar
  71. Kumar KVA et al (2017) Simultaneous photocatalytic degradation of p-cresol and Cr(VI) by metal oxides supported reduced graphene oxide. Mol Catal 451:87–95CrossRefGoogle Scholar
  72. Kwon CH et al (2004) Degradation of methylene blue via photocatalysis of titanium dioxide. Mater Chem Phys 86(1):78–82CrossRefGoogle Scholar
  73. Lai C et al (2010) Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposite as anode materials for lithium-ion batteries. Electrochim Acta 55(15):4567–4572CrossRefGoogle Scholar
  74. Langlet M et al (2002) Sol–gel preparation of photocatalytic TiO2 films on polymer substrates. J Sol-Gel Sci Technol 25(3):223–234CrossRefGoogle Scholar
  75. Li W (2013) Photocatalysis of oxide semiconductors. J Aust Ceram Soc 49(2):41–46Google Scholar
  76. Li X et al (2008) Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl Catal B Environ 81(3):267–273CrossRefGoogle Scholar
  77. Li J et al (2011) Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells. Chem Phys Lett 514(1):141–145CrossRefGoogle Scholar
  78. Li L et al (2012) Carbon heterogeneous surface modification on a mesoporous TiO2-supported catalyst and its enhanced hydrodesulfurization performance. Chem Commun 48(94):11525–11527CrossRefGoogle Scholar
  79. Li Y, Zhao H, Yang M (2017a) TiO2 nanoparticles supported on PMMA nanofibers for photocatalytic degradation of methyl orange. J Colloid Interface Sci 508(Suppl C):500–507CrossRefGoogle Scholar
  80. Li X et al (2017b) CdS nanoparticles loaded on porous poly-melamine–formaldehyde polymer for photocatalytic dye degradation. Res Chem Intermed 43(9):5083–5090CrossRefGoogle Scholar
  81. Li Y-S et al (2017c) Controlled preparation and highly photocatalytic activity of portable MCC-g-GMA@TiO2 photocatalyst by pre-radiation grafting–embedding method. Appl Catal B Environ 218(Suppl C):101–110CrossRefGoogle Scholar
  82. Li Y et al (2017d) Preparation of environment-friendly 3D eggshell membrane-supported anatase TiO2 as a reusable photocatalyst for degradation of organic dyes. Chem Phys Lett 689(Suppl C):142–147CrossRefGoogle Scholar
  83. Liao G et al (2011) Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres. Appl Catal B Environ 102(1–2):126–131CrossRefGoogle Scholar
  84. Lin X et al (2011) Carbon-doped mesoporous TiO2 film and its photocatalytic activity. Microporous Mesoporous Mater 142(1):276–281CrossRefGoogle Scholar
  85. Lin C et al (2013) Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles. Nanoscale 5(11):4986–4992CrossRefGoogle Scholar
  86. Lin H et al (2017) Graphitic carbon nitride–supported iron oxides: high-performance photocatalysts for the visible-light-driven degradation of 4-nitrophenol. J Photochem Photobiol A Chem 336(Suppl C):105–114CrossRefGoogle Scholar
  87. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758CrossRefGoogle Scholar
  88. Liu R, Liu Z (2009) Polythiophene: synthesis in aqueous medium and controllable morphology. Chin Sci Bull 54:2028–2032Google Scholar
  89. Liu Z et al (2006) An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett 7(4):1081–1085CrossRefGoogle Scholar
  90. Liu SX, Chen XY, Chen X (2007) A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. J Hazard Mater 143(1):257–263CrossRefGoogle Scholar
  91. Liu X et al (2012) UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem Eng J 183(Suppl C):238–243CrossRefGoogle Scholar
  92. Liu J et al (2017) Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage. Appl Catal B Environ 202(Suppl C):642–652Google Scholar
  93. Magalhães F, Lago RM (2009) Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes. Sol Energy 83(9):1521–1526CrossRefGoogle Scholar
  94. Magalhães F, Moura FCC, Lago RM (2011) TiO2/LDPE composites: a new floating photocatalyst for solar degradation of organic contaminants. Desalination 276(1):266–271CrossRefGoogle Scholar
  95. Makarova TL (2001) Electrical and optical properties of pristine and polymerized fullerenes. Semiconductors 35(3):243–278CrossRefGoogle Scholar
  96. Martins AC et al (2017) Sol–gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram Int 43(5):4411–4418CrossRefGoogle Scholar
  97. Matsuoka M et al (2007) Photocatalysis for new energy production: recent advances in photocatalytic water splitting reactions for hydrogen production. Catal Today 122(1):51–61CrossRefGoogle Scholar
  98. Meng Z-D et al (2012) Synthesis and characterization of M-fullerene/TiO2 photocatalysts designed for degradation azo dye. Mater Sci Eng C 32(8):2175–2182CrossRefGoogle Scholar
  99. Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108(1):1–35CrossRefGoogle Scholar
  100. Mohammad F, Calvert PD, Billingham NC (1995) Thermal stability of electrochemically prepared polythiophene and polypyrrole. Bull Mater Sci 18(3):255–261CrossRefGoogle Scholar
  101. Mou Z et al (2014) TiO2 nanoparticles–functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation. ACS Appl Mater Interfaces 6(16):13798–13806CrossRefGoogle Scholar
  102. Mungondori HH, Tichagwa L, Katwire DM (2016) Removal of Pb2+ and Fe3+ from water using N–TiO2 blended copolymer grafted asymmetric membranes. Water Sci Technol 73(8):1855–1864CrossRefGoogle Scholar
  103. Murugan E, Rangasamy R (2011) Development of stable pollution free TiO2/Au nanoparticle immobilized green photo catalyst for degradation of methyl orange. J Biomed Nanotechnol 7(1):225–228CrossRefGoogle Scholar
  104. Nabid MR et al (2013) Preparation of new magnetic nanocatalysts based on TiO2 and ZnO and their application in improved photocatalytic degradation of dye pollutant under visible light. Photochem Photobiol 89(1):24–32CrossRefGoogle Scholar
  105. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C: Photochem Rev 13(3):169–189CrossRefGoogle Scholar
  106. Nakata K et al (2012) Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochim Acta 84(Suppl C):103–111CrossRefGoogle Scholar
  107. Ni M et al (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11(3):401–425CrossRefGoogle Scholar
  108. Nitnithiphrut P, Thabuot M, Seithtanabutara V (2017) Fabrication of composite supercapacitor containing para wood-derived activated carbon and TiO2. Energy Procedia 138(Suppl C):116–121CrossRefGoogle Scholar
  109. Nouri E, Mohammadi MR, Lianos P (2016) Impact of preparation method of TiO2–rGO nanocomposite photoanodes on the performance of dye-sensitized solar cells. Electrochim Acta 219(Suppl C):38–48CrossRefGoogle Scholar
  110. Ooyama Y et al (2011) Dye-sensitized solar cells based on donor–acceptor π-conjugated fluorescent dyes with a pyridine ring as an electron-withdrawing anchoring group. Angew Chem Int Ed 50(32):7429–7433CrossRefGoogle Scholar
  111. Orfanopoulos M, Kambourakis S (1994) Fullerene C60 and C70 photosensitized oxygenation of olefins. Tetrahedron Lett 35(12):1945–1948CrossRefGoogle Scholar
  112. Orikasa H et al (2007) Crystal formation and growth during the hydrothermal synthesis of [small beta]-Ni(OH)2 in one-dimensional nano space. Dalton Trans 0(34):3757–3762CrossRefGoogle Scholar
  113. Ozawa K et al (2016) Capturing transiently charged states at the C60/TiO2(110) interface by time-resolved soft X-ray photoelectron spectroscopy. Org Electron 31(Suppl C):98–103CrossRefGoogle Scholar
  114. Park Y et al (2009) Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl Catal B Environ 91(1):355–361CrossRefGoogle Scholar
  115. Park H et al (2016) Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ Sci 9(2):411–433CrossRefGoogle Scholar
  116. Perera SD et al (2012) Hydrothermal synthesis of graphene–TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2(6):949–956CrossRefGoogle Scholar
  117. Petroff Ii JT et al (2017) Enhanced photocatalytic dehalogenation of aryl halides by combined poly-p-phenylene (PPP) and TiO2 photocatalysts. J Photochem Photobiol A Chem 335(Suppl C):149–154CrossRefGoogle Scholar
  118. Pirkanniemi K, Sillanpää M (2002) Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 48(10):1047–1060CrossRefGoogle Scholar
  119. Reddy KR et al (2010) Nanofibrous TiO2-core/conjugated polymer-sheath composites: synthesis, structural properties and photocatalytic activity. J Nanosci Nanotechnol 10(12):7951–7957CrossRefGoogle Scholar
  120. Reddy KR et al (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120(Suppl C):169–174CrossRefGoogle Scholar
  121. Ren W et al (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B Environ 69(3):138–144CrossRefGoogle Scholar
  122. Robertson PKJ (1996) Semiconductor photocatalysis: an environmentally acceptable alternative production technique and effluent treatment process. J Clean Prod 4(3):203–212CrossRefGoogle Scholar
  123. Roonasi P, Mazinani M (2017) Synthesis and application of barium ferrite/activated carbon composite as an effective solar photocatalyst for discoloration of organic dye contaminants in wastewater. J Environ Chem Eng 5(4):3822–3827CrossRefGoogle Scholar
  124. Rosu M-C et al (2017) Azo dyes degradation using TiO2–Pt/graphene oxide and TiO2–Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation. Solid State Sci 70(Suppl C):13–20CrossRefGoogle Scholar
  125. Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108(50):19384–19387CrossRefGoogle Scholar
  126. Santos HM, Lodeiro C, Capelo-Martínez J-L (2009) The power of ultrasound. In: Capelo‐Martínez JL (ed) Ultrasound in chemistry: analytical applications. Wiley, Weinheim, pp 1–16Google Scholar
  127. Sboui M et al (2017) TiO2–PANI/cork composite: a new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation. J Environ Sci 60(Suppl C):3–13CrossRefGoogle Scholar
  128. ScienceLab.com (2005a) Aniline material safety data sheet. ScienceLab.com, HoustonGoogle Scholar
  129. ScienceLab.com (2005b) Thiophene material safety data sheet. ScienceLab.com, HoustonGoogle Scholar
  130. ScienceLab.com (2012) Pyrrole material safety data sheet. ScienceLab.com, HoustonGoogle Scholar
  131. Senthilkumar B, Thenamirtham P, Kalai Selvan R (2011) Structural and electrochemical properties of polythiophene. Appl Surf Sci 257(21):9063–9067CrossRefGoogle Scholar
  132. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A Gen 253(2):337–358CrossRefGoogle Scholar
  133. Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A Gen 389(1):1–8CrossRefGoogle Scholar
  134. Sharma A, Lee B-K (2017) Growth of TiO2 nano-wall on activated carbon fibers for enhancing the photocatalytic oxidation of benzene in aqueous phase. Catal Today 287(Suppl C):113–121CrossRefGoogle Scholar
  135. Shende TP et al (2018) Sonochemical synthesis of graphene–Ce–TiO2 and graphene–Fe–TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye. Ultrason Sonochem 41(Suppl C):582–589CrossRefGoogle Scholar
  136. Shi J (2013) On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem Rev 113(3):2139–2181CrossRefGoogle Scholar
  137. Sibley SP, Argentine SM, Francis AH (1992) A photoluminescence study of C60 and C70. Chem Phys Lett 188(3):187–193CrossRefGoogle Scholar
  138. Sigma-Aldrich (2013a) Aniline ACS reagent, ≥99.5%. https://www.sigmaaldrich.com/catalog/product/sial/242284?lang=en&region=US. Accessed 2017
  139. Sigma-Aldrich (2013b) Thiophene >99%. https://www.sigmaaldrich.com/catalog/product/aldrich/t31801?lang=en&region=US. Accessed 2017
  140. Sigma-Aldrich (2013c) Pyrrole reagent grade, 98%. https://www.sigmaaldrich.com/catalog/product/aldrich/131709?lang=en&region=US. Accessed 2017
  141. Singh P et al (2016) Photocatalytic degradation of acid red dye stuff in the presence of activated carbon–TiO2 composite and its kinetic enumeration. J Water Process Eng 12(Suppl C):20–31CrossRefGoogle Scholar
  142. Song X et al (2016) Solvent-free in situ synthesis of g-C3N4/{001}TiO2 composite with enhanced UV- and visible-light photocatalytic activity for NO oxidation. Appl Catal B Environ 182:587–597CrossRefGoogle Scholar
  143. Starr BJ et al (2016) Coating porous membranes with a photocatalyst: comparison of LbL self-assembly and plasma-enhanced CVD techniques. J Membr Sci 514(Suppl C):340–349CrossRefGoogle Scholar
  144. Steplin Paul Selvin S et al (2017) Photocatalytic degradation of rhodamine B using cysteine capped ZnO/P(3HB-co-3HHx) fiber under UV and visible light irradiation. React Kinet Mech Catal 122(1):671–684CrossRefGoogle Scholar
  145. Sun H et al (2006) Preparation and characterization of visible-light-driven carbon–sulfur-codoped TiO2 photocatalysts. Ind Eng Chem Res 45(14):4971–4976CrossRefGoogle Scholar
  146. Tachikawa T et al (2004) Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. J Phys Chem B 108(50):19299–19306CrossRefGoogle Scholar
  147. Takeda N et al (1995) Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J Phys Chem 99(24):9986–9991CrossRefGoogle Scholar
  148. Solid State Technology (2011) Graphene races CNT for nanomaterial commercialization. https://electroiq.com/2011/09/graphene-races-cnt-for-nanomaterial-commercialization/. Accessed 2019 Feb 12
  149. Tennakone K, Tilakaratne CTK, Kottegoda IRM (1995) Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films. J Photochem Photobiol A Chem 87(2):177–179CrossRefGoogle Scholar
  150. Teoh WY, Scott JA, Amal R (2012) Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 3(5):629–639CrossRefGoogle Scholar
  151. Terazima M et al (1991) Photothermal investigation of the triplet state of carbon molecule (C60). J Phys Chem 95(23):9080–9085CrossRefGoogle Scholar
  152. Tierney, J.P. and P. Lidström (eds). Microwave assisted organic synthesis. 2005, Oxford: Blackwell. p. 133–134CrossRefGoogle Scholar
  153. Trapalis A et al (2016) TiO2/graphene composite photocatalysts for NOx removal: a comparison of surfactant-stabilized graphene and reduced graphene oxide. Appl Catal B Environ 180(Suppl C):637–647CrossRefGoogle Scholar
  154. Tryba B, Morawski AW, Inagaki M (2003) Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl Catal B Environ 41(4):427–433CrossRefGoogle Scholar
  155. Ueda T et al (2009) Preparation of single-walled carbon nanotube/TiO2 hybrid atmospheric gas sensor operated at ambient temperature. Diam Relat Mater 18(2):493–496CrossRefGoogle Scholar
  156. Vinoth R et al (2017) Bismuth oxyiodide incorporated reduced graphene oxide nanocomposite material as an efficient photocatalyst for visible light assisted degradation of organic pollutants. Appl Surf Sci 418(Part A):163–170CrossRefGoogle Scholar
  157. Wang C-C, Ying JY (1999) Sol–gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater 11(11):3113–3120CrossRefGoogle Scholar
  158. Wang H et al (2009) Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Res 43(1):204–210CrossRefGoogle Scholar
  159. Wang X et al (2016) Activated carbon-based magnetic TiO2 photocatalyst codoped with iodine and nitrogen for organic pollution degradation. Appl Surf Sci 390(Suppl C):190–201Google Scholar
  160. Wang Q et al (2017a) Preparation of carbon spheres supported CdS photocatalyst for enhancement its photocatalytic H2 evolution. Catal Today 281(Part 3):662–668CrossRefGoogle Scholar
  161. Wang L et al (2017b) Silver chloride enwrapped silver grafted on nitrogen-doped reduced graphene oxide as a highly efficient visible-light-driven photocatalyst. J Colloid Interface Sci 505(Suppl C):421–429CrossRefGoogle Scholar
  162. Wang Z et al (2017c) Bi metal sphere/graphene oxide nanohybrids with enhanced direct plasmonic photocatalysis. Appl Catal B Environ 214(Suppl C):148–157CrossRefGoogle Scholar
  163. Wei W et al (2013) Improvement of the visible-light photocatalytic performance of TiO2 by carbon mesostructures. Chem Eur J 19(2):566–577CrossRefGoogle Scholar
  164. Xie Q, Perez-Cordero E, Echegoyen L (1992) Electrochemical detection of C60 6− and C70 6−: enhanced stability of fullerides in solution. J Am Chem Soc 114(10):3978–3980CrossRefGoogle Scholar
  165. Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 49(4):89–112CrossRefGoogle Scholar
  166. Xu S et al (2011) Structure and photocatalytic activity of polythiophene/TiO2 composite particles prepared by photoinduced polymerization. Chin J Catal 32(3–4):536–545CrossRefGoogle Scholar
  167. Yan Q-L et al (2016) Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 8(9):4799–4851CrossRefGoogle Scholar
  168. Yang M-Q, Zhang N, Xu Y-J (2013) Synthesis of fullerene–, carbon nanotube–, and graphene–TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS Appl Mater Interfaces 5(3):1156–1164CrossRefGoogle Scholar
  169. Yao Y et al (2008) Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ Sci Technol 42(13):4952–4957CrossRefGoogle Scholar
  170. Yun J-H et al (2012) Combined electrophoretic deposition–anodization method to fabricate reduced graphene oxide–TiO2 nanotube films. RSC Adv 2(21):8164–8171CrossRefGoogle Scholar
  171. Yuranova T et al (2004) Fenton immobilized photo-assisted catalysis through a Fe/C structured fabric. Appl Catal B Environ 49(1):39–50CrossRefGoogle Scholar
  172. Zhang H et al (2008) Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ Sci Technol 42(10):3803–3807CrossRefGoogle Scholar
  173. Zhang H et al (2010a) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386CrossRefGoogle Scholar
  174. Zhang Y et al (2010b) TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2–graphene truly different from other TiO2–carbon composite materials? ACS Nano 4(12):7303–7314CrossRefGoogle Scholar
  175. Zhang Y et al (2011) Engineering the unique 2D mat of graphene to achieve graphene–TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5(9):7426–7435CrossRefGoogle Scholar
  176. Zhang G et al (2013a) Preparation of carbon–TiO2 nanocomposites by a hydrothermal method and their enhanced photocatalytic activity. RSC Adv 3(46):24644–24649CrossRefGoogle Scholar
  177. Zhang L et al (2013b) Facile fabrication and characterization of multi-type carbon-doped TiO2 for visible light–activated photocatalytic mineralization of gaseous toluene. J Mater Chem A 1(14):4497–4507CrossRefGoogle Scholar
  178. Zhang J et al (2015) Study on stability of poly(3-hexylthiophene)/titanium dioxide composites as a visible light photocatalyst. Appl Surf Sci 349(Suppl C):650–656CrossRefGoogle Scholar
  179. Zheng Y, Zhang Z, Li C (2016) Beta-FeOOH-supported graphitic carbon nitride as an efficient visible light photocatalyst. J Mol Catal A Chem 423(Suppl C):463–471CrossRefGoogle Scholar
  180. Zhiyong Y et al (2008) Flexible polymer TiO2 modified film photocatalysts active in the photodegradation of azo-dyes in solution. Inorg Chim Acta 361(3):589–594CrossRefGoogle Scholar
  181. Zhou F-L, Gong R-H, Porat I (2009) Polymeric nanofibers via flat spinneret electrospinning. Polym Eng Sci 49(12):2475–2481CrossRefGoogle Scholar
  182. Zhu B, Zou L (2009) Trapping and decomposing of color compounds from recycled water by TiO2 coated activated carbon. J Environ Manag 90(11):3217–3225CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kakarla Raghava Reddy
    • 1
  • M. S. Jyothi
    • 2
  • A. V. Raghu
    • 2
  • V. Sadhu
    • 3
  • S. Naveen
    • 2
  • Tejraj M. Aminabhavi
    • 4
  1. 1.School of Chemical & Biomolecular EngineeringThe University of SydneySydneyAustralia
  2. 2.Department of Basic Sciences, School of Engineering and TechnologyJAIN Deemed-to-be UniversityBangaloreIndia
  3. 3.School of Physical Sciences, Banasthali VidyapithBanasthali, RajasthanIndia
  4. 4.Soniya College of PharmacyDharwadIndia

Personalised recommendations