Advertisement

Phosphors-Based Photocatalysts for Wastewater Treatment

  • Olga Sacco
  • Vincenzo VaianoEmail author
  • Diana Sannino
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 30)

Abstract

Every day a large amount of products has been released by chemical and pharmaceutical industries threatening the environment and human health. Moreover, their removal using conventional oxidation methods is difficult because a lot of pollutants are biorecalcitrant. Photocatalysis, an advanced oxidation technology, appears one of the most viable solutions due to its ability to oxidize a wide range of toxic organic compounds into harmless compounds such as CO2 and H2O by irradiation with UV light. Organic pollutants can be removed from water by a UV-driven photocatalytic process involving nanoparticles with semiconducting properties. However, their use in a photoreaction system suffers of the disadvantage due to the no-uniform photon distribution inside the reactor core.

The chapter describes a possible solution for enhancing the photon distribution inside the photoreactors, using inorganic and organic light-emitting particles (phosphors) coupled with photocatalysts to be applied in water and wastewater treatment. The chapter also underlines the difference between inorganic particles having down-conversion, up-conversion, and long-afterglow luminescence properties. Additionally, the use of up-conversion organic phosphors has been proposed. Finally, some examples concerning the use of semiconductors coupled with different photoluminescent materials in the removal of pollutants from water and wastewater are presented.

Keywords

Photocatalysis Wastewater treatment Phosphors Down-conversion phosphors Up-conversion phosphors Long-afterglow phosphors Organic up-conversion phosphors Coupling with photocatalysts Doped photocatalysts UV and visible light 

References

  1. Aitasalo T, Dereń P, Hölsä J, Jungner H, Krupa JC, Lastusaari M, Niittykoski J, Stręk W (2003) Persistent luminescence phenomena in materials doped with rare earth ions. J Solid State Chem 171(1):114–122.  https://doi.org/10.1016/S0022-4596(02)00194-9 CrossRefGoogle Scholar
  2. Alberti S, Locardi F, Sturini M, Speltini A, Maraschi F, Costa GA, Ferretti M, Caratto V (2017) Photocatalysis in Darkness. Optimization of Sol-gel Synthesis of NP-TiO2 Supported on a Persistent Luminescence Material and its Application for the Removal of Ofloxacin from Water. Int J Nanotechnol Nanomedicine 9(3):1–7Google Scholar
  3. Al-Ekabi H, Serpone N (1988) Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. J Phys Chem 92(20):5726–5731.  https://doi.org/10.1021/j100331a036 CrossRefGoogle Scholar
  4. Auzel F (2004) Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem Rev 104(1):139–173.  https://doi.org/10.1021/cr020357g CrossRefGoogle Scholar
  5. Chan EM (2015) Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications. Chem Soc Rev 44(6):1653–1679.  https://doi.org/10.1039/C4CS00205A CrossRefGoogle Scholar
  6. Chen J, Zhao JX (2012) Upconversion nanomaterials: synthesis, mechanism and applications in sensing. Sensors 12:2414–2435.  https://doi.org/10.3390/s120302414 CrossRefGoogle Scholar
  7. Chen S-F, Liu Y-J, Navizet I, Ferré N, Fang W-H, Lindh R (2011) Systematic Theoretical Investigation on the Light Emitter of Firefly. J Chem Theory Comput 7(3):798–803.  https://doi.org/10.1021/ct200045q CrossRefGoogle Scholar
  8. Chen X, Peng D, Ju Q, Wang F (2015) Photon upconversion in core-shell nanoparticles. Chem Soc Rev 44(6):1318–1330.  https://doi.org/10.1039/C4CS00151F CrossRefGoogle Scholar
  9. Ciambelli P, Sannino D, Palma V, Vaiano V, Mazzei RS (2011) Intensification of gas-phase photoxidative dehydrogenation of ethanol to acetaldehyde by using phosphors as light carriers. Photochem Photobiol Sci 10(3):414–418.  https://doi.org/10.1039/c0pp00186d CrossRefGoogle Scholar
  10. Ciambelli P, Vaiano V, Sannino D (2017) Visible Light Heterogeneous Nanophotocatalysts (From Catalyst Formulation to Air, Water, and Surface Cleaning Application). In: Nanotechnology in Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 873–890CrossRefGoogle Scholar
  11. Demas JN (2011) Book Review of Luminescence Applied in Sensor Science. J Am Chem Soc 133(48):19563–19563.  https://doi.org/10.1021/ja210245t CrossRefGoogle Scholar
  12. den Eeckhout V, Koen S, Philippe F, Poelman D (2010) Persistent luminescence in Eu2+−doped compounds: a review. Materials 3:2536–2566.  https://doi.org/10.3390/ma3042536 CrossRefGoogle Scholar
  13. Feldmann C, Jüstel T, Ronda CR, Schmidt PJ (2003) Inorganic Luminescent Materials: 100 Years of Research and Application. Adv Funct Mat 13(7):511–516.  https://doi.org/10.1002/adfm.200301005 CrossRefGoogle Scholar
  14. Gainer CF, Joshua GS, Silva D, Channa R, Romanowski M (2011) Control of green and red upconversion in NaYF4:Yb3+,Er3+ nanoparticles by excitation modulation. J Mat Chem 21(46):18530–18533.  https://doi.org/10.1039/C1JM13684D CrossRefGoogle Scholar
  15. Gao Y, Shi C, Feng J, Zhao G, Yu H, Bi Y, Ding F, Sun Y, Xu Z (2017) Synergistic effect of upconversion and plasmons in NaYF4:Yb3+, Er3+, Tm3+@TiO2-Ag composites for MO photodegradation. RSC Adv 7(86):54555–54561.  https://doi.org/10.1039/C7RA09368C CrossRefGoogle Scholar
  16. Gonzalez-Bejar M, Perez-Prieto J (2015) Upconversion luminescent nanoparticles in physical sensing and in monitoring physical processes in biological samples. Methods Appl Fluoresc 3(4):042002CrossRefGoogle Scholar
  17. Harvey EN (1919) Studies on Bioluminescence: IX. Chemical nature of cypridina luciferin and cypridina luciferase. J Gen Physiol 1(3):269–293CrossRefGoogle Scholar
  18. Herrmann J-M (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53(1):115–129.  https://doi.org/10.1016/S0920-5861(99)00107-8 CrossRefGoogle Scholar
  19. Herrmann JM, Guillard C, Pichat P (1993) Heterogeneous photocatalysis: an emerging technology for water treatment. Catal Today 17(1):7–20.  https://doi.org/10.1016/0920-5861(93)80003-J CrossRefGoogle Scholar
  20. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96.  https://doi.org/10.1021/cr00033a004 CrossRefGoogle Scholar
  21. Huang S, Gu L, Miao C, Lou Z, Zhu N, Yuan H, Shan A (2013) Near-infrared photocatalyst of Er3+/Yb3+ codoped (CaF2@TiO2) nanoparticles with active-core/active-shell structure. J Mat Chem A 1(27):7874–7879.  https://doi.org/10.1039/C3TA11472D CrossRefGoogle Scholar
  22. Ibhadon A, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1):189CrossRefGoogle Scholar
  23. Jury WA, Vaux H (2005) The role of science in solving the world’s emerging water problems. Proc Nat Acad Sci U S A 102(44):15715–15720.  https://doi.org/10.1073/pnas.0506467102 CrossRefGoogle Scholar
  24. Kim J-H, Kim J-H (2012) Encapsulated Triplet–Triplet Annihilation-Based Upconversion in the Aqueous Phase for Sub-Band-Gap Semiconductor Photocatalysis. J Am Chem Soc 134(42):17478–17481.  https://doi.org/10.1021/ja308789u CrossRefGoogle Scholar
  25. Ko JH, Ko S (2003) Process for providing a titanium dioxide layer on a material that contains a light absorbing substance and the product so formed. United States Patent, US6569386B1Google Scholar
  26. Lei B-F, Yue S, Zhang Y-Z, Liu Y-L (2010) Luminescence properties of Sr2SnO4:Sm3+ afterglow phosphor. Chin Phys Lett 27(3):037201/037201–037201/037204.  https://doi.org/10.1088/0256-307X/27/3/037201 CrossRefGoogle Scholar
  27. Li S, Wang W, Chen Y, Zhang L, Guo J, Gong M (2009) Fabrication and characterization of TiO2/BaAl2O4: Eu2+, Dy3+ and its photocatalytic performance towards oxidation of gaseous benzene. Catal Commun 10(7):1048–1051.  https://doi.org/10.1016/j.catcom.2008.12.064 CrossRefGoogle Scholar
  28. Li C, Wang F, Zhu J, Yu JC (2010) NaYF4:Yb,Tm/CdS composite as a novel near-infrared-driven photocatalyst. Appl Catal B Environ 100(3):433–439.  https://doi.org/10.1016/j.apcatb.2010.08.017 CrossRefGoogle Scholar
  29. Li Z-X, Shi F-B, Zhang T, Wu H-S, Sun L-D, Yan C-H (2011) Ytterbium stabilized ordered mesoporous titania for near-infrared photocatalysis. Chem Commun 47(28):8109–8111.  https://doi.org/10.1039/C1CC12539G CrossRefGoogle Scholar
  30. Li H, Yin S, Sato T (2011a) Novel luminescent photocatalytic deNOx activity of CaAl2O4:(Eu, Nd)/TiO2-xNy composite. Appl Catal B 106(3–4):586–591.  https://doi.org/10.1016/j.apcatb.2011.06.019 CrossRefGoogle Scholar
  31. Li H, Yin S, Sato T (2011b) Persistent deNOx Ability of CaAl2O4:(Eu,Nd)/TiO2-xNy Luminescent Photocatalyst. Nanoscale Res Lett 6(1):1–4.  https://doi.org/10.1007/s11671-010-9750-7 CrossRefGoogle Scholar
  32. Li H, Yin S, Wang Y, Sato T (2012a) Effect of phase structures of TiO2-xNy on the photocatalytic activity of CaAl2O4:(Eu, Nd)-coupled TiO2-xNy. J Catal 286:273–278.  https://doi.org/10.1016/j.jcat.2011.11.013 CrossRefGoogle Scholar
  33. Li H, Yin S, Wang Y, Sato T (2012b) Persistent Fluorescence-Assisted TiO2-xNy-Based Photocatalyst for Gaseous Acetaldehyde Degradation. Environ Sci Technol 46(14):7741–7745.  https://doi.org/10.1021/es300987s CrossRefGoogle Scholar
  34. Li Y, Gecevicius M, Qiu J (2016) Long persistent phosphors – From fundamentals to applications. Chem Soc Rev 45(8):2090–2136.  https://doi.org/10.1039/c5cs00582e CrossRefGoogle Scholar
  35. Lin Y-C, Karlsson M, Bettinelli M (2016) Inorganic phosphor materials for lighting. Top Curr Chem 374(2):21.  https://doi.org/10.1007/s41061-016-0023-5 CrossRefGoogle Scholar
  36. Liu Q, Yang T, Feng W, Li F (2012) Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J Am Chem Soc 134(11):5390–5397.  https://doi.org/10.1021/ja3003638 CrossRefGoogle Scholar
  37. Liu G, Niu P, Cheng H-M (2013a) Visible-Light-Active Elemental Photocatalysts. ChemPhysChem 14(5):885–892.  https://doi.org/10.1002/cphc.201201075 CrossRefGoogle Scholar
  38. Liu X, Pan L, Li J, Yu K, Sun Z, Sun CQ (2013b) Light down-converting characteristics of ZnO-Y2O2S:Eu3+ for visible light photocatalysis. J Colloid Interface Sci 404:150–154.  https://doi.org/10.1016/j.jcis.2013.04.047 CrossRefGoogle Scholar
  39. Liu X, Chu H, Li J, Niu L, Li C, Li H, Pan L, Sun CQ (2015a) Light converting phosphor-based photocatalytic composites. Cat Sci Technol 5(10):4727–4740.  https://doi.org/10.1039/C5CY00622H CrossRefGoogle Scholar
  40. Liu X, Wang X, Li H, Li J, Pan L, Zhang J, Min G, Pan L, Sun Z, Sun C (2015b) Enhanced visible light photocatalytic activity of ZnO doped with down-conversion NaSrBO3:Tb3+ phosphors. Dalton Trans 44(1):97–103.  https://doi.org/10.1039/C4DT01252F CrossRefGoogle Scholar
  41. Liu S, Liu S, Zhou M, Ye X, Hou D, You W (2017) Upconversion luminescence enhancement and temperature sensing behavior of F- co-doped Ba3Lu4O9:Er3+/Yb3+ phosphors. RSC Adv 7(59):36935–36948.  https://doi.org/10.1039/C7RA06054H CrossRefGoogle Scholar
  42. Lu C-H, Chen C-T, Bhattacharjee B (2006) Sol-Gel Preparation and Luminescence Properties of BaMgAl10O17:Eu2+ Phosphors. J Rare Earths 24(6):706–711.  https://doi.org/10.1016/S1002-0721(07)60013-1CrossRefGoogle Scholar
  43. Maliva R, Missimer T (2012) Wastewater reuse. Environmental Science and Engineering (Subseries: Environmental Science). pp 773–803CrossRefGoogle Scholar
  44. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y (1996) A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+. J Electrochem Soc 143(8):2670–2673.  https://doi.org/10.1149/1.1837067 CrossRefGoogle Scholar
  45. Mekprasart W, Pecharapa W (2011) Synthesis and characterization of nitrogen-doped TiO2 and its photocatalytic activity enhancement under visible light. Paper presented at the Energy ProcediaGoogle Scholar
  46. Monguzzi A, Oertel A, Braga D, Riedinger A, Kim DK, Knüsel PN, Bianchi A, Mauri M, Simonutti R, Meinardi F (2017) Photocatalytic water-splitting enhancement by sub-bandgap photon harvesting. ACS Appl Mat Interfaces 9(46):40180–40186.  https://doi.org/10.1021/acsami.7b10829 CrossRefGoogle Scholar
  47. Motegh M, van Ommen JR, Appel PW, Kreutzer MT (2014) Scale-Up study of a multiphase photocatalytic reactor—Degradation of cyanide in water over TiO2. Environ Sci Technol 48(3):1574–1581.  https://doi.org/10.1021/es403378e CrossRefGoogle Scholar
  48. Mukherjee PS, Ray AK (1999) Major challenges in the design of a large-scale photocatalytic reactor for water treatment. Chem Eng Technol 22(3):253–260.  https://doi.org/10.1002/(SICI)1521-4125(199903)22:3<253::AID-CEAT253>3.0.CO;2-X CrossRefGoogle Scholar
  49. Murcia JJ, Hidalgo MC, Navío JA, Vaiano V, Ciambelli P, Sannino D (2012) Photocatalytic ethanol oxidative dehydrogenation over Pt/TiO 2: Effect of the addition of blue phosphors. Int J Photoenergy 2012.  https://doi.org/10.1155/2012/687262 CrossRefGoogle Scholar
  50. Naidoo S, Olaniran AO (2014) Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Environ Res Public Health 11(1):249–270.  https://doi.org/10.3390/ijerph110100249 CrossRefGoogle Scholar
  51. Palma V, Sannino D, Vaiano V, Ciambelli P (2010) Fluidized-Bed Reactor for the Intensification of Gas-Phase Photocatalytic Oxidative Dehydrogenation of Cyclohexane. Ind Eng Chem Res 49(21):10279–10286.  https://doi.org/10.1021/ie1005383 CrossRefGoogle Scholar
  52. Qin X, Liu X, Huang W, Bettinelli M, Liu X (2017) Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects. Chem Rev 117(5):4488–4527.  https://doi.org/10.1021/acs.chemrev.6b00691 CrossRefGoogle Scholar
  53. Ray AK, Beenackers AACM (1998) Development of a new photocatalytic reactor for water purification. Catal Today 40(1):73–83.  https://doi.org/10.1016/S0920-5861(97)00123-5 CrossRefGoogle Scholar
  54. Ronda CR (2007) Emission and Excitation Mechanisms of Phosphors Luminescence. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–34Google Scholar
  55. Sacco O, Stoller M, Vaiano V, Ciambelli P, Chianese A, Sannino D (2012) Photocatalytic degradation of organic dyes under visible light on n-doped TiO2 photocatalysts. Int J Photoenergy 2012.  https://doi.org/10.1155/2012/626759 Google Scholar
  56. Sacco O, Vaiano V, Han C, Sannino D, Dionysiou DD, Ciambelli P (2015a) Long afterglow green phosphors functionalized with Fe-N doped TiO2 for the photocatalytic removal of emerging contaminants. Chem Eng Trans 43:2107–2112.  https://doi.org/10.3303/CET1543352 CrossRefGoogle Scholar
  57. Sacco O, Vaiano V, Han C, Sannino D, Dionysiou DD (2015b) Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors. Appl Catal B Environ 164:462–474.  https://doi.org/10.1016/j.apcatb.2014.09.062 CrossRefGoogle Scholar
  58. Sacco O, Vaiano V, Sannino D, Ciambelli P (2017) Visible light driven mineralization of spiramycin over photostructured N-doped TiO2 on up conversion phosphors. J Environ Sci (China) 54:268–276.  https://doi.org/10.1016/j.jes.2016.02.018 CrossRefGoogle Scholar
  59. Sacco O, Vaiano V, Matarangolo M (2018) ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis. Sep Purif Technol 193:303–310.  https://doi.org/10.1016/j.seppur.2017.10.056 CrossRefGoogle Scholar
  60. Samer M (2015) Chapter 1: Biological and chemical wastewater treatment processes. In: Samer M (ed) Wastewater treatment engineering. InTech, RijekaCrossRefGoogle Scholar
  61. Sannino D, Vaiano V, Ciambelli P (2013) Innovative structured VOx/TiO2 photocatalysts supported on phosphors for the selective photocatalytic oxidation of ethanol to acetaldehyde. Catal Today 205:159–167.  https://doi.org/10.1016/j.cattod.2012.07.038 CrossRefGoogle Scholar
  62. Shi H, Zhang T, Wang H (2011) Preparation and photocatalytic activity of La3+ and Eu3+ co-doped TiO2 nanoparticles: photo-assisted degradation of methylene blue. J Rare Earths 29(8):746–752.  https://doi.org/10.1016/S1002-0721(10)60535-2 CrossRefGoogle Scholar
  63. Shi J, Ye J, Ma L, Ouyang S, Jing D, Guo L (2012) Site-Selected Doping of Upconversion Luminescent Er3+ into SrTiO3 for Visible-Light-Driven Photocatalytic H2 or O2 Evolution. Chem Eur J 18(24):7543–7551.  https://doi.org/10.1002/chem.201102807 CrossRefGoogle Scholar
  64. Singh-Rachford TN, Castellano FN (2010) Photon upconversion based on sensitized triplet–triplet annihilation. Coord Chem Rev 254(21):2560–2573.  https://doi.org/10.1016/j.ccr.2010.01.003 CrossRefGoogle Scholar
  65. Smet PF, Moreels I, Hens Z, Poelman D (2010) Luminescence in sulfides: A rich history and a bright future. Materials 3(4):2834–2883.  https://doi.org/10.3390/ma3042834 CrossRefGoogle Scholar
  66. Spasiano D, Marotta R, Malato S, Fernandez-Ibañez P, Di Somma I (2015) Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B Environ 170–171:90–123.  https://doi.org/10.1016/j.apcatb.2014.12.050 CrossRefGoogle Scholar
  67. Sunandan B, Samir KP, Joydeep D (2012) Nanostructured zinc oxide for water treatment. Nanosci Nanotechnol Asia 2(2):90–102.  https://doi.org/10.2174/2210681211202020090 CrossRefGoogle Scholar
  68. Tamrakar RK, Bisen DP, Upadhyay K (2015) Effect of annealing on down-conversion properties of monoclinic Gd2O3:Er3+ nanophosphors. Luminescence 30(6):812–817.  https://doi.org/10.1002/bio.2824 CrossRefGoogle Scholar
  69. Tamrakar RK, Bisen DP, Upadhyay K, Sahu IP, Sahu M (2016) The down conversion properties of a Gd2O3:Er3+ phosphor prepared via a combustion synthesis method. RSC Adv 6(95):92360–92370.  https://doi.org/10.1039/C6RA16286J CrossRefGoogle Scholar
  70. Tang Y, Di W, Zhai X, Yang R, Qin W (2013) NIR-responsive photocatalytic activity and mechanism of NaYF4:Yb,Tm@TiO2 core–shell nanoparticles. ACS Catal 3(3):405–412.  https://doi.org/10.1021/cs300808r CrossRefGoogle Scholar
  71. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mat 24(2):229–251.  https://doi.org/10.1002/adma.201102752 CrossRefGoogle Scholar
  72. Vaiano V, Sacco O, Iervolino G, Sannino D, Ciambelli P, Liguori R, Bezzeccheri E, Rubino A (2015a) Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2. Appl Catal B Environ 176–177:594–600.  https://doi.org/10.1016/j.apcatb.2015.04.049 CrossRefGoogle Scholar
  73. Vaiano V, Sacco O, Pisano D, Sannino D, Ciambelli P (2015b) From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chem Eng Sci 137:152–160.  https://doi.org/10.1016/j.ces.2015.06.023 CrossRefGoogle Scholar
  74. Vaiano V, Sacco O, Sannino D, Ciambelli P (2015c) Process intensification in the removal of organic pollutants from wastewater using innovative photocatalysts obtained coupling Zinc Sulfide based phosphors with nitrogen doped semiconductors. J Clean Prod 100:208–211.  https://doi.org/10.1016/j.jclepro.2015.03.041 CrossRefGoogle Scholar
  75. Vaiano V, Sacco O, Sannino D, Ciambelli P (2016) N-doped ZnO nanoparticles supported on ZnS based blue phosphors in the photocatalytic removal of eriochrome black-T dye. Chem Eng Trans 47:187–192.  https://doi.org/10.3303/CET1647032 CrossRefGoogle Scholar
  76. Vaiano V, Matarangolo M, Sacco O, Sannino D (2017a) Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts. Appl Catal B Environ 209:621–630.  https://doi.org/10.1016/j.apcatb.2017.03.015 CrossRefGoogle Scholar
  77. Vaiano V, Sacco O, Sannino D (2017b) Enhanced photocatalytic degradation of organic pollutants in wastewater using photocatalysts coupled with luminescent materials. Chem Eng Trans 60:211–216.  https://doi.org/10.3303/CET1760036 CrossRefGoogle Scholar
  78. Valeur B, Berberan-Santos MN (2011) A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory. J Chem Edu 88(6):731–738.  https://doi.org/10.1021/ed100182h CrossRefGoogle Scholar
  79. van der Ende BM, Aarts L, Meijerink A (2009) Lanthanide ions as spectral converters for solar cells. Phys Chem Chem Phys 11(47):11081–11095.  https://doi.org/10.1039/B913877C CrossRefGoogle Scholar
  80. Van Gerven T, Mul G, Moulijn J, Stankiewicz A (2007) A review of intensification of photocatalytic processes. Chem Eng Proc: Process Intensif 46(9):781–789.  https://doi.org/10.1016/j.cep.2007.05.012 CrossRefGoogle Scholar
  81. Virk HS (2015) History of Luminescence from Ancient to Modern Times. Defect Diffus Forum 361:1–13.  https://doi.org/10.4028/www.scientific.net/DDF.361.1 CrossRefGoogle Scholar
  82. Vuojola J, Soukka T (2014) Luminescent lanthanide reporters: New concepts for use in bioanalytical applications. Methods Appl Fluoresc 2(1).  https://doi.org/10.1088/2050-6120/2/1/012001 CrossRefGoogle Scholar
  83. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38(4):976–989.  https://doi.org/10.1039/b809132n CrossRefGoogle Scholar
  84. Wang W, Huang W, Ni Y, Lu C, Xu Z (2014) Different Upconversion Properties of β-NaYF4:Yb3+,Tm3+/Er3+ in Affecting the Near-Infrared-Driven Photocatalytic Activity of High-Reactive TiO2. ACS Appl Mat Interfaces 6(1):340–348.  https://doi.org/10.1021/am404389g CrossRefGoogle Scholar
  85. Werts MHV (2005) Making sense of lanthanide luminescence. Sci Prog (St Albans, U K) 88(2):101–131.  https://doi.org/10.3184/003685005783238435 CrossRefGoogle Scholar
  86. Wu X, Yin S, Dong Q, Sato T (2014) Blue/green/red colour emitting up-conversion phosphors coupled C-TiO2 composites with UV, visible and NIR responsive photocatalytic performance. Appl Catal B Environ 156–157:257–264.  https://doi.org/10.1016/j.apcatb.2014.03.028 CrossRefGoogle Scholar
  87. Ye X, Luo Y, Liu S, Hou D, You W (2017) Intense and color-tunable upconversion luminescence of Er3+ doped and Er3+/Yb3+ co-doped Ba3Lu4O9 phosphors. J Alloys Compounds 701:806–815.  https://doi.org/10.1016/j.jallcom.2017.01.177 CrossRefGoogle Scholar
  88. Zhang J, Pan F, Hao W, Ge Q, Wang T (2004) Light-storing photocatalyst. Appl Phys Lett 85(23):5778–5780.  https://doi.org/10.1063/1.1833554 CrossRefGoogle Scholar
  89. Zhang Z, Wang W, Yin W, Shang M, Wang L, Sun S (2010) Inducing photocatalysis by visible light beyond the absorption edge: Effect of upconversion agent on the photocatalytic activity of Bi2WO6. Appl Catal B Environ 101(1):68–73.  https://doi.org/10.1016/j.apcatb.2010.09.008 CrossRefGoogle Scholar
  90. Zhang M, Lin Y, Mullen TJ, Lin W-f, Sun L-D, Yan C-H, Patten TE, Wang D, Liu G-y (2012) Improving Hematite’s solar water splitting efficiency by incorporating Rare-Earth upconversion nanomaterials. J Phys Chem Lett 3(21):3188–3192.  https://doi.org/10.1021/jz301444a CrossRefGoogle Scholar
  91. Zhao J, Ji S, Guo H (2011) Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv 1(6):937–950.  https://doi.org/10.1039/C1RA00469G CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly

Personalised recommendations