Advertisement

Medicinal Applications of Photocatalysts

  • Busra Balli
  • Aysenur Aygun
  • Fatih SenEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 30)

Abstract

With the help of nanotechnology and nanoscience, future devices and technologies will be small and possess advanced features; photocatalysis is an important area of application. This chapter discusses the importance of photocatalysts and their medicinal applications for human beings in daily life. The properties of photocatalysts as a result of their nanoscale are discussed. The main medicinal applications of photocatalysts—antifungal, antimicrobial, anticancer, and several another applications—are also focused on in detail.

Keywords

Antifungal Antimicrobial Anticancer Carbon nanotube Graphene Inhibition Medicine Nanoscience Nanomaterial Nanotechnology Photocatalyst 

References

  1. Abbas F, Jan T, Iqbal J et al (2015) Fe doping induced enhancement in room temperature ferromagnetism and selective cytotoxicity of CeO2 nanoparticles. Curr Appl Phys 15:1428–1434.  https://doi.org/10.1016/j.cap.2015.08.007 CrossRefGoogle Scholar
  2. Abdel Rehim MH, El-Samahy MA, Badawy AA et al (2016) Photocatalytic activity and antimicrobial properties of paper sheets modified with TiO2/sodium alginate nanocomposites. Carbohydr Polym 148:194–199.  https://doi.org/10.1016/j.carbpol.2016.04.061 CrossRefGoogle Scholar
  3. Abrahamson JT, Sen F, Sempere B et al (2013) Excess thermopower and the theory of thermopower waves. ACS Nano 7(8):6533–6544.  https://doi.org/10.1021/nn402411k CrossRefGoogle Scholar
  4. Akocak S, Sen B, Lolak N et al (2017) One-pot three-component synthesis of 2-amino-4H-chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct Nano-Objects 11:25–31.  https://doi.org/10.1016/jnanoso.2017.06.002 CrossRefGoogle Scholar
  5. Ameta R, Ameta SC (2017) Photocatalysıs: principles and applications. Taylor & Francis, Boca RatonGoogle Scholar
  6. Arunadevi R, Kavitha B, Rajarajan M et al (2018) Investigation of the drastic improvement of photocatalytic degradation of Congo red by monoclinic Cd, Ba--CuO nanoparticles, and its antimicrobial activities. Surf Interfaces 10:32–44.  https://doi.org/10.1016/j.surfin.2017.11.004 CrossRefGoogle Scholar
  7. Ayranci R, Baskaya G, Guzel M et al (2017a) Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: a comparative investigation. Nano-Struct Nano-Objects 11:13–19.  https://doi.org/10.1016/j.nanoso.2017.05.008 CrossRefGoogle Scholar
  8. Ayranci R, Baskaya G, Guzel M et al (2017b) Carbon-based nanomaterials for high-performance optoelectrochemical systems. Chem Select 2(4):1548–1555.  https://doi.org/10.1002/slct.201601632 CrossRefGoogle Scholar
  9. Baskaya G, Esirden I, Erken E et al (2017) Synthesis of 5-substituted-1H-tetrazole derivatives using monodisperse carbon black decorated Pt nanoparticles as heterogeneous nanocatalysts. J Nanosci Nanotechnol 17:1992–1999.  https://doi.org/10.1166/jnn.2017.12867 CrossRefGoogle Scholar
  10. Bhatkhande DS, Pangarkar VG, Beenackers AACM (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77:102–116.  https://doi.org/10.1002/jctb.532 CrossRefGoogle Scholar
  11. Bozkurt S, Tosun B, Sen B et al (2017) A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Anal Chim Acta 989C:88–94.  https://doi.org/10.1016/j.aca.2017.07.051 CrossRefGoogle Scholar
  12. Cai R, Hashimoto K, Kubota Y et al (1992a) Phagocytosis of titanium dioxide particles chemically modified by hematoporphyrin. Denki Kagaku 60:314–321Google Scholar
  13. Cai R, Hashimoto K, Kubota Y et al (1992b) Increment of the photocatalytic killing of cancer cells using TiO2 with the aid of superoxide dismutase. Chem Lett 21:M427–M430.  https://doi.org/10.1246/cl.1992.427 CrossRefGoogle Scholar
  14. Celik B, Kuzu S, Erken E et al (2016a) Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation. Int J Hydrog Energy 41:3093–3101.  https://doi.org/10.1016/j.ijhydene.2015.12.138 CrossRefGoogle Scholar
  15. Celik B, Yildiz Y, Erken E et al (2016b) Monodisperse palladium--cobalt alloy nanoparticles assembled on poly (N-vinyl-pyrrolidone) (PVP) as highly effective catalyst for the dimethylamine borane (DMAB) dehydrocoupling. RSC Adv 6:24097–24102.  https://doi.org/10.1039/C6RA00536E CrossRefGoogle Scholar
  16. Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16(7–8):272–280.  https://doi.org/10.1016/j.mattod.2013.07.002 CrossRefGoogle Scholar
  17. Chen C, Lei P, Ji H et al (2004) Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts. Intermediates and mechanistic study. Environ Sci Technol 38:329–337.  https://doi.org/10.1021/es034384f CrossRefGoogle Scholar
  18. Cho M, Yoon J (2008) Measurement of OH radical CT for inactivating Cryptosporidium parvum using photo/ferrioxalate and photo/TiO2 systems. Appl Microbiol 104:759–766.  https://doi.org/10.1111/j.1365-2672.2007.03682.x CrossRefGoogle Scholar
  19. Cho M, Chung H, Choi W et al (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38:1069–1077.  https://doi.org/10.1016/j.watres.2003.10.029 CrossRefGoogle Scholar
  20. Cho M, Chung H, Choi W et al (2005) Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71:270–275.  https://doi.org/10.1128/AEM.71.1.270-275.2005 CrossRefGoogle Scholar
  21. Choi YS, Kim B-W (2000) Photocatalytic disinfection of E. coli in a UV/TiO2--immobilized optical-fiber reactor. J Chem Technol Biotechnol 75:145–1150.  https://doi.org/10.1002/1097-4660(200012)75:12<1145::AID-JCTB341>3.0.CO;2-X CrossRefGoogle Scholar
  22. Dalrymple OK, Stefanakosa E, Trotz MA et al (2010) A review of the mechanisms and modeling of photocatalytic disinfection. Appl Catal B Environ 98:27–38.  https://doi.org/10.1016/j.apcatb.2010.05.001 CrossRefGoogle Scholar
  23. Demir E, Savk A, Sen B et al (2017) A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells. Nano-Struct Nano-Objects 12:41–45.  https://doi.org/10.1016/j.nanoso.2017.08.018 CrossRefGoogle Scholar
  24. Dutta PK, Pehkonen SO, Sharma VK et al (2005) Photocatalytic oxidation of arsenic(III): evidence of hydroxyl radicals. Environ Sci Technol 39:1827–1834.  https://doi.org/10.1021/es0489238 CrossRefGoogle Scholar
  25. Eris S, Dasdelen Z, Sen F et al (2018a) Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in situ synthesis for methanol electrooxidation. Int J Hydrog Energy 43(1):385–390.  https://doi.org/10.1016/j.ijhydene.2017.11.063 CrossRefGoogle Scholar
  26. Eris S, Dasdelen Z, Yildiz Y et al (2018b) Nanostructured polyaniline--rGO decorated platinum catalyst with enhanced activity and durability for methanol oxidation. Int J Hydrog Energy 43(3):1337–1343.  https://doi.org/10.1016/j.ijhydene.2017.11.051 CrossRefGoogle Scholar
  27. Erkan A, Bakir U, Karakas G (2006) Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol A Chem 184(3):313–321.  https://doi.org/10.1021/es0489238 CrossRefGoogle Scholar
  28. Fujishima A, Ohtsuki J, Yamashita T et al (1986) Behavior of tumor cells on the photoexcited semiconductor surface. Photomed Photobiol 8:45–46Google Scholar
  29. Gamage J, Zhang Z (2010) Applications of photocatalytic disinfection. Int J Photoenergy.  https://doi.org/10.1155/2010/764870 CrossRefGoogle Scholar
  30. Ganguly P, Byrne C, Breen A, Pillai SC (2018) Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances. Appl Catal B Environ 225:51–75.  https://doi.org/10.1016/j.apcatb.2017.11.018 CrossRefGoogle Scholar
  31. Goksu H, Celik B, Yildiz Y et al (2016) Superior monodisperse CNT-supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in an aqueous medium. Chem Select 1(10):2366–2372.  https://doi.org/10.1002/slct.201600509 CrossRefGoogle Scholar
  32. Göksu H, Zengin N, Karaosman N et al (2018) Highly active and reusable Pd/AlO(OH) nanoparticles for the Suzuki cross-coupling reaction. Curr Organocatalysis 5:1–8.  https://doi.org/10.2174/2213337205666180614114550 CrossRefGoogle Scholar
  33. Günbatar S, Aygun A, Karataş Y et al (2018) Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature. J Colloid Interface Sci 530:321–327.  https://doi.org/10.1016/j.jcis.2018.06.100 CrossRefGoogle Scholar
  34. Halbus AF, Horozov TS, Paunov VN (2017) Colloid particle formulations for antimicrobial applications. Adv Colloid Interf Sci 249:134–148.  https://doi.org/10.1016/j.cis.2017.05.012 CrossRefGoogle Scholar
  35. Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129.  https://doi.org/10.1016/S0920-5861(99)00107-8 CrossRefGoogle Scholar
  36. Hu C, Guo J, Qu J et al (2007) Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation. Langmuir 23:4982–4987.  https://doi.org/10.1021/la063626x CrossRefGoogle Scholar
  37. Hu Z, Huang Y, Sun S et al (2012) Visible light-driven photodynamic anticancer activity of graphene oxide/TiO2 hybrid. Carbon 50:994–1004.  https://doi.org/10.1016/j.carbon.2011.10.002 CrossRefGoogle Scholar
  38. Huang S, Guild B, Neethirajan S et al (2017) Antimicrobial coatings for controlling Listeria monocytogenes based on polylactide modified with titanium dioxide and illuminated with UV-A. Food Control 73:421–425.  https://doi.org/10.1016/j.foodcont.2016.08.030 CrossRefGoogle Scholar
  39. Hui A, Liu J, Ma J (2016) Synthesis and morphology-dependent antimicrobial activity of cerium doped flower-shaped ZnO crystallites under visible light irradiation. Colloids Surf A: Physicochem Eng Asp 506:519–525.  https://doi.org/10.1016/j.colsurfa.2016.07.016 CrossRefGoogle Scholar
  40. Huo P, Liu C, Wu D et al (2018) Fabricated Ag/Ag2S/reduced graphene oxide composite photocatalysts for enhancing visible light photocatalytic and antibacterial activity. J Ind Eng Chem 57:125–133.  https://doi.org/10.1016/j.jiec.2017.08.015 CrossRefGoogle Scholar
  41. Jalvoa B, Faraldos M, Bahamonde A et al (2018) Antibacterial surfaces prepared by electrospray coating of photocatalytic nanoparticles. Chem Eng J 334:1108–1118.  https://doi.org/10.1016/j.cej.2017.11.057 CrossRefGoogle Scholar
  42. Jan T, Iqbal J, Farooq U et al (2015) Structural, Raman and optical characteristics of Sn-doped CuO nanostructures: a novel anticancer agent. Ceram Int 41:13074–13079.  https://doi.org/10.1016/j.ceramint.2015.06.080 CrossRefGoogle Scholar
  43. Janovák L, Deák Á, Tallósy SP et al (2017) Hydroxyapatite-enhanced structural, photocatalytic and antibacterial properties of photoreactive TiO2/HAp/polyacrylate hybrid thin films. Surf Coat Technol 326:316–326.  https://doi.org/10.1016/j.surfcoat.2017.07.072 CrossRefGoogle Scholar
  44. Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind Eng Chem Res 43:7683–7696.  https://doi.org/10.1021/ie0498551 CrossRefGoogle Scholar
  45. Kairyte K, Kadys A, Luksiene Z (2013) Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J Photochem Photobiol B Biol 128(5):78–84.  https://doi.org/10.1016/j.jphotobiol.2013.07.017 CrossRefGoogle Scholar
  46. Khan MS, Abdelhamid HM, Wu HF (2015) Near-infrared (NIR) laser–mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf B Biointerfaces 91:127–281.  https://doi.org/10.1016/j.colsurfb.2014.12.049 CrossRefGoogle Scholar
  47. Khan AU, Yuan Q, Wei Y et al (2016) Photocatalytic and antibacterial response of biosynthesized gold nanoparticles. J Photochem Photobiol B Biol 162:273–277.  https://doi.org/10.1016/j.jphotobiol.2016.06.055 CrossRefGoogle Scholar
  48. Kim JH, Joshi MK, Lee J et al (2018) Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity. J Colloid Interface Sci 513:566–574.  https://doi.org/10.1016/j.jcis.2017.11.061 CrossRefGoogle Scholar
  49. Klare M, Schein J, Vogelsang K et al (2000) Degradation of short-chain alkyl- and alkanol amines by TiO2- and Pt/TiO2-assisted photocatalysis. Chemosphere 41:353–362.  https://doi.org/10.1016/S0045-6535(99)00447-6 CrossRefGoogle Scholar
  50. Koskun Y, Şavk A, Şen B et al (2018) Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal Chim Acta 1010:37–43.  https://doi.org/10.1016/j.aca.2018.01.035 CrossRefGoogle Scholar
  51. Lagopati N, Kitsiou PV, Kontos AI et al (2010) Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution. J Photochem Photobiol A Chem 214:215–223.  https://doi.org/10.1016/j.jphotochem.2010.06.031 CrossRefGoogle Scholar
  52. Liga MV, Bryant EL, Colvin VL et al (2011) Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res 45:535–544.  https://doi.org/10.1016/j.watres.2010.09.012 CrossRefGoogle Scholar
  53. Liou JW, Chang HH (2012) Bactericidal effects and mechanisms of visible light responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch Immunol Ther Exp 60:267–275.  https://doi.org/10.1007/s00005-012-0178-x CrossRefGoogle Scholar
  54. Lonnen J, Kilvington S, Kehoe SC et al (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res 39:877–883.  https://doi.org/10.1016/j.watres.2004.11.023 CrossRefGoogle Scholar
  55. Lukowiak A, Kedziora A, Strek W (2016) Antimicrobial graphene family materials: progress, advances, hopes and fears. Adv Colloid Interf Sci 236:101–112.  https://doi.org/10.1016/j.cis.2016.08.002 CrossRefGoogle Scholar
  56. Machida M, Norimoto K, Kimura T (2005) Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware. J Am Ceram Soc 88:95–100.  https://doi.org/10.1111/j.1551-2916.2004.00006.x CrossRefGoogle Scholar
  57. Magdalene CM, Kaviyarasu K, Vijaya JJ et al (2017) Photocatalytic degradation effect of malachite green and catalytic hydrogenation by UV–illuminated CeO2/CdO multilayered nanoplatelet arrays: investigation of antifungal and antimicrobial activities. J Photochem Photobiol B Biol 169:110–123.  https://doi.org/10.1016/j.jphotobiol.2017.03.008 CrossRefGoogle Scholar
  58. Managa M, Antunes E, Nyokong T (2014) Conjugates of platinum nanoparticles with gallium tetra–(4-carboxyphenyl) porphyrin and their use in photodynamic antimicrobial chemotherapy when in solution or embedded in electrospun fiber. Polyhedron 76:94–101.  https://doi.org/10.1016/j.poly.2014.03.050 CrossRefGoogle Scholar
  59. Maness P, Smolinski S, Blake DM et al (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098Google Scholar
  60. Marugán J, van Grieken R, Sordo C et al (2008) Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Appl Catal B 82:27–36.  https://doi.org/10.1016/j.apcatb.2008.01.002 CrossRefGoogle Scholar
  61. Matsunaga T, Tomoda R, Nakajima T et al (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214.  https://doi.org/10.1111/j.1574-6968.1985.tb00864.x CrossRefGoogle Scholar
  62. McEvoy JG, Zhang Z (2014) Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. J Photochem Photobiol C: Photochem Rev 19:62–75.  https://doi.org/10.1016/j.jphotochemrev.2014.01.001 CrossRefGoogle Scholar
  63. McLoughlin OA, Ibanez PF, Gernjak W et al (2004) Photocatalytic disinfection of water using low-cost compound parabolic collectors. Sol Energy 77:625–633.  https://doi.org/10.1016/j.solener.2004.05.017 CrossRefGoogle Scholar
  64. Mehmood F, Iqbal J, Jan T et al (2016) Effect of Sn doping on the structural, optical, electrical and anticancer properties of WO3 nanoplates. Ceram Int 42(13):14334–14341.  https://doi.org/10.1016/j.ceramint.2016.04.010 CrossRefGoogle Scholar
  65. Mehmood F et al (2017a) Vibrational spectroscopy for imaging single microbial cells in complex biological samples. Front Microbiol 93:78–89.  https://doi.org/10.3389/fmicb.2017.00675 CrossRefGoogle Scholar
  66. Mehmood F, Iqbal J, Jan T et al (2017b) Structural, photoluminescence, electrical, anti-cancer and visible light driven photocatalytic characteristics of Co-doped WO3 nanoplates. Vib Spectrosc 93:78–89.  https://doi.org/10.1016/j.vibspec.2017.09.005 CrossRefGoogle Scholar
  67. Mehmood F, Iqbal J, Jan T et al (2017c) Structural, Raman and photoluminescence properties of Fe doped WO3 nanoplates with anti-cancer and visible light driven photocatalytic activities. J Alloys Compd 728:1329–1337.  https://doi.org/10.1016/j.jallcom.2017.08.234 CrossRefGoogle Scholar
  68. Méndez-Hermida F, Ares-Mazás E, McGuigan KG et al (2007) Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2. J Photochem Photobiol B 88:105–111.  https://doi.org/10.1016/j.jphotobiol.2007.05.004 CrossRefGoogle Scholar
  69. Navalon S, Alvaro M, Garcia H et al (2009) Photocatalytic water disinfection of Cryptosporidium parvum and Giardia lamblia using a fibrous ceramic TiO2 photocatalyst. Water Sci Technol 59:639–645.  https://doi.org/10.2166/wst.2009.016 CrossRefGoogle Scholar
  70. Piccirillo C, Castro PML (2017) Calcium hydroxyapatite--based photocatalysts for environment remediation: characteristics, performances, and future perspectives. J Environ Manag 193:79–91.  https://doi.org/10.1016/j.jenvman.2017.01.071 CrossRefGoogle Scholar
  71. Rajeshwar K, Chenthamarakshan CR, Goeringer S et al (2001) Titania-based heterogeneous photocatalysis. Materials, mechanical issues, and implications for environmental remediation. Pure Appl Chem 73:1849–1860.  https://doi.org/10.1351/pac200173121849 CrossRefGoogle Scholar
  72. Rasmussen JW et al (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7:1063–1077.  https://doi.org/10.1517/17425247.2010.502560 CrossRefGoogle Scholar
  73. Ray SK, Dhakal D, Pandey RP et al (2017) Ag--BaMoO4: Er3+/Yb3+ photocatalyst for antibacterial application. Mater Sci Eng C 78:1164–1171.  https://doi.org/10.1016/j.msec.2017.04.115 CrossRefGoogle Scholar
  74. Rehana D, Mahendiran D, Manigandan R et al (2017) Evaluation of photocatalytic, antimicrobial and anticancer activities of ZnO/MS (M = Zn, Cd or Pb) core/shell nanoparticles. Mater Sci Eng B 225:20–32.  https://doi.org/10.1016/j.mseb.2017.08.003 CrossRefGoogle Scholar
  75. Richardson SD, Thruston AD, Caughran TV et al (1999a) Identification of new ozone disinfection byproducts in drinking water. Environ Sci Technol 33:3368–3377.  https://doi.org/10.1021/es981218c CrossRefGoogle Scholar
  76. Richardson SD, Thruston AD, Caughran TV et al (1999b) Identification of new drinking water disinfection byproducts formed in the presence of bromide. Environ Sci Technol 33:3378–3383.  https://doi.org/10.1021/es9900297 CrossRefGoogle Scholar
  77. Rincon AG, Pulgarin C (2004) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl Catal B 49:99–112.  https://doi.org/10.1016/j.apcatb.2003.11.013 CrossRefGoogle Scholar
  78. Rodrigues CP, Ziolli RL, Guimarães JR et al (2007) Inactivation of Escherichia coli in water by TiO2-assisted disinfection using solar light. Chem Soc 18:126–134.  https://doi.org/10.1590/S0103-50532007000100014 CrossRefGoogle Scholar
  79. Ryu H, Gerrity D, Crittenden JC et al (2008) Photocatalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation. Water Res 42:1523–1530.  https://doi.org/10.1016/j.watres.2007.10.037 CrossRefGoogle Scholar
  80. Sahin B, Aygun A, Gündüz H et al (2018) Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf B: Biointerfaces 163:119–124.  https://doi.org/10.1016/j.colsurfb.2017.12.042 CrossRefGoogle Scholar
  81. Sakai H, Baba R, Hashimoto K et al (1995) Selective killing of a single cancerous T24 cell with TiO2 semiconducting microelectrode under irradiation. Chem Lett 24:185–186.  https://doi.org/10.1246/cl.1995.185 CrossRefGoogle Scholar
  82. Sen F, Ulissi ZW, Gong X et al (2014) Spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors. Nano Lett 14(8):4887–4894.  https://doi.org/10.1021/nl502338y CrossRefGoogle Scholar
  83. Sen B, Aygün A, Onal Okyay T et al (2018a) Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine--borane. Int J Hydrog Energy.  https://doi.org/10.1016/j.ijhydene.2018.03.175 CrossRefGoogle Scholar
  84. Sen B, Kuyuldar E, Demirkan B et al (2018b) Highly efficient polymer supported monodisperse ruthenium--nickel nanocomposites for dehydrocoupling of dimethylamine borane. J Colloid Interface Sci 526:480–486.  https://doi.org/10.1016/j.jcis.2018.05.021 CrossRefGoogle Scholar
  85. Seo Y, Yeo BE, Cho YS et al (2017) Photo-enhanced antibacterial activity of Ag3PO4. Mater Lett 197:146–149.  https://doi.org/10.1016/j.matlet.2017.03.105 CrossRefGoogle Scholar
  86. Sharma H et al (2015) Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today 20:1143–1151.  https://doi.org/10.1016/j.drudis.2015.05.009 CrossRefGoogle Scholar
  87. Sharma H et al (2016) Development and characterization of metal oxide nanoparticles for the delivery of the anticancer drug. Artif Cells Nanomed Biotechnol 44:672–679.  https://doi.org/10.3109/21691401.2014.978980 CrossRefGoogle Scholar
  88. Singh VP, Sandeep K, Kushwaha HS et al (2018) Photocatalytic, hydrophobic and antimicrobial characteristics of ZnO nanoneedle embedded cement composites. Constr Build Mater 158:285–294.  https://doi.org/10.3389/fmicb.2018.00422 CrossRefGoogle Scholar
  89. Sökmen M, Candan F, Sümer Z (2001) Disinfection of E. coli by the Ag--TiO2/UV system: lipid peroxidation. J Photochem Photobiol A Chem 143:241–244.  https://doi.org/10.1016/S1010-6030(01)00497-X CrossRefGoogle Scholar
  90. Srinivasan C, Somasundaram N (2003) Bactericidal and detoxification effects of irradiated semiconductor catalyst, TiO2. Curr Sci 85:1431–1438Google Scholar
  91. Sun DD, Tay JH, Tan KM (2003) Photocatalytic degradation of E. coli form in water. Water Res 37:3452–3462.  https://doi.org/10.1016/S0043-1354(03)00228-8 CrossRefGoogle Scholar
  92. Sunada K, Kikuchi Y, Hashimoto K (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32:726–728.  https://doi.org/10.1021/es970860o CrossRefGoogle Scholar
  93. Tatlıdil I, Sökmen M, Breen C et al (2011) Degradation of Candida albicans on TiO2 and Ag--TiO2 thin films prepared by sol--gel and nanosuspensions. J Sol-Gel Sci Technol 60:23–32.  https://doi.org/10.1007/s10971-011 CrossRefGoogle Scholar
  94. Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122:178–192.  https://doi.org/10.1016/0021-9517(90)90269-P CrossRefGoogle Scholar
  95. Valerini D, Tammaro L, Di Benedetto F et al (2018) Aluminum-doped zinc oxide coatings on polylactic acid films for antimicrobial food packaging. Thin Solid Films 645:187–192.  https://doi.org/10.1016/j.tsf.2017.10.038 CrossRefGoogle Scholar
  96. Watts RJ, Kong S, Orr MP et al (1995) Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Res 29:95–100.  https://doi.org/10.1016/0043-1354(94)E0122-M CrossRefGoogle Scholar
  97. Wei C, Lin WY, Zainal Z et al (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar assisted water disinfection system. Environ Sci Technol 28:934–938.  https://doi.org/10.1021/es00054a027 CrossRefGoogle Scholar
  98. Wong CC, Chu W (2003) The hydrogen peroxide--assisted photocatalytic degradation of alachlor in TiO2 suspensions. Environ Sci Technol 37:2310–2316.  https://doi.org/10.1021/es020898n CrossRefGoogle Scholar
  99. Xiao G, Zhang X, Zhao Y et al (2014) The behavior of active bactericidal and antifungal coating under visible light irradiation. Appl Surf Sci 292:756–763CrossRefGoogle Scholar
  100. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3(7):643–646.  https://doi.org/10.1016/j.apsusc.2013.12.044 CrossRefGoogle Scholar
  101. Yildiz Y, Okyay TO, Sen B et al (2017a) Activated carbon furnished monodisperse Pt nanocomposites as a superior adsorbent for methylene blue removal from aqueous solutions. J Nanosci Nanotechnol 17:4799–4804.  https://doi.org/10.1166/jnn.2017.13776 CrossRefGoogle Scholar
  102. Yildiz Y, Okyay TO, Sen B et al (2017b) Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. Chem Select 2(2):697–670.  https://doi.org/10.1002/slct.201601608 CrossRefGoogle Scholar
  103. Yousef A, El-Halwany MM, Nam B et al (2015) Cu0-doped TiO2 nanofibers as potential photocatalyst and antimicrobial agent. J Ind Eng Chem 26:251–258.  https://doi.org/10.1016/j.jiec.2014.11.036 CrossRefGoogle Scholar
  104. Zhang H, Chen B, Jiang H et al (2011) A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 32:1906–1914.  https://doi.org/10.1016/j.biomaterials.2010.11.027 CrossRefGoogle Scholar
  105. Zhang J, Liu X, Suo X et al (2017) Facile synthesis of Ag/AgCl/TiO2 plasmonic photocatalyst with efficiently antibacterial activity. Mater Lett 198:164–167.  https://doi.org/10.1016/j.matlet.2017.04.029 CrossRefGoogle Scholar
  106. Zhang C, Li Y, Zhang W et al (2018) Metal-free virucidal effects induced by g-C3N4 under visible light irradiation: statistical analysis and parameter optimization. Chemosphere 195:551–558.  https://doi.org/10.1016/j.chemosphere.2017.12.122 CrossRefGoogle Scholar
  107. Zhuo J (2016) Photoactive chemicals for antimicrobial textiles. In: Sun G (ed) Antimicrobial textiles, Woodhead Publishing Series in Textiles. Woodhead, Duxford, pp 197–223.  https://doi.org/10.1016/B978-0-08-100576-7.00011-0 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sen Research Group, Biochemistry Department, Faculty of Arts and ScienceDumlupınar UniversityKütahyaTurkey

Personalised recommendations