Advertisement

CS Theory-Based Compression Techniques for Medical Images

  • Rohit M. Thanki
  • Ashish Kothari
Chapter

Abstract

This chapter covers various compressive sensing (CS) theory-based compression techniques for medical images. These techniques are implemented using various image transforms such as DFT, DCT, DWT, and hybridization of it. Here, the sparsity property of image transforms is explored. The chapter gives a performance analysis of these techniques using various evaluation parameters such as RMSE, PSNR, CR, and various SIM.

Keywords

Compressive sensing Compressed image Measurement matrix Sparse coefficients Sparse measurements 

References

  1. 1.
    Candès, E. J. (2006, August). Compressive sampling. In Proceedings of the international congress of mathematicians (Vol. 3, pp. 1433–1452).Google Scholar
  2. 2.
    Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baraniuk, R. G. (2007). Compressive sensing [lecture notes]. IEEE Signal Processing Magazine, 24(4), 118–121.CrossRefGoogle Scholar
  4. 4.
    Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Nagesh, P., & Li, B. (2009, April). Compressive imaging of color images. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on (pp. 1261–1264). IEEE.Google Scholar
  6. 6.
    Mishra, A., Thakkar, F., Modi, C., & Kher, R. (2012, August). ECG signal compression using compressive sensing and wavelet transform. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual international conference of the IEEE (pp. 3404–3407). IEEE.Google Scholar
  7. 7.
    Sevak, M. M., Thakkar, F. N., Kher, R. K., & Modi, C. K. (2012, May). CT image compression using compressive sensing and wavelet transform. In Communication Systems and Network Technologies (CSNT), 2012 International Conference on (pp. 138–142). IEEE.Google Scholar
  8. 8.
    Zhou, Y., & Zhao, H. (2013). Speech signal compressed sensing based on K-svd adaptive dictionary. Journal of Theoretical & Applied Information Technology, 48(2), 1237–1243.Google Scholar
  9. 9.
    Abo-Zahhad, M. M., Hussein, A. I., & Mohamed, A. M. (2015). Compression of ecg signal based on compressive sensing and the extraction of significant features. International Journal of Communications, Network and System Sciences, 8(05), 97–117.CrossRefGoogle Scholar
  10. 10.
    Yan, J. (2009). Wavelet Matrix. British Columbia: The university of Victoria.Google Scholar
  11. 11.
    Vidakovic, B. (1999). Statistical Modelling by Wavelet (pp. 115–116). Wiley, USA.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rohit M. Thanki
    • 1
  • Ashish Kothari
    • 2
  1. 1.Faculty of Technology and EngineeringC. U. Shah UniversityWadhwan CityIndia
  2. 2.Atmiya UniversityRajkotIndia

Personalised recommendations