Classification in Data Compression

  • Rohit M. Thanki
  • Ashish Kothari


This chapter covers the classification of various data compression techniques. The classification of these techniques can be done by various factors such as quality of compressed data, used coding techniques, types of data, and based on applications. This chapter also covers the comparison of existing techniques available in the literature based on various features.


Arithmetic Huffman Lossless Lossy Medical imaging Wireless sensor networks 


  1. 1.
    Uthayakumar, J., Vengattaraman, T., & Dhavachelvan, P. (2018). A survey on data compression techniques: From the perspective of data quality, coding schemes, data type and applications. Journal of King Saud University-Computer and Information Sciences, 1–22.Google Scholar
  2. 2.
    Drost, G. W., & Bourbakis, N. G. (2001). A hybrid system for real-time lossless image compression. Microprocessors and Microsystems, 25(1), 19–31.CrossRefGoogle Scholar
  3. 3.
    Zhang, Y., & Li, J. (2007). Linear predictor-based lossless compression of vibration sensor data: Systems approach. Journal of Engineering Mechanics, 133(4), 431–441.CrossRefGoogle Scholar
  4. 4.
    Huffman, D. A. (1952). A technique for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9), 1098–1101.CrossRefGoogle Scholar
  5. 5.
    Capon, J. (1959). A probabilistic model for run-length coding of pictures. IRE Transactions on Information Theory, 5(4), 157–163.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Narasimha, M., & Peterson, A. (1978). On the computation of the discrete cosine transform. IEEE Transactions on Communications, 26(6), 934–936.zbMATHCrossRefGoogle Scholar
  7. 7.
    Langdon, G. G. (1984). An introduction to arithmetic coding. IBM Journal of Research and Development, 28(2), 135–149.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Langdon, G., & Rissanen, J. (1981). Compression of black-white images with arithmetic coding. IEEE Transactions on Communications, 29(6), 858–867.CrossRefGoogle Scholar
  9. 9.
    Langdon, G., & Rissanen, J. (1983). A double-adaptive file compression algorithm. IEEE Transactions on Communications, 31(11), 1253–1255.zbMATHCrossRefGoogle Scholar
  10. 10.
    Todd, S., Langdon, G. G., & Rissanen, J. (1985). Parameter reduction and context selection for compression of gray-scale images. IBM Journal of Research and Development, 29(2), 188–193.CrossRefGoogle Scholar
  11. 11.
    Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE Transactions on Information Theory, 23(3), 337–343.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory, 24(5), 530–536.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Welch, T. A. (1984). Technique for high-performance data compression. Computer, (52), 17(6), 8 - 19..CrossRefGoogle Scholar
  14. 14.
    Saupe, D., & Hamzaoui, R. (1994). A review of the fractal image compression literature. ACM SIGGRAPH Computer Graphics, 28(4), 268–276.CrossRefGoogle Scholar
  15. 15.
    Burrows, M., & Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm. California: Systems Research Center. Weblink: Last Access: November 2018.Google Scholar
  16. 16.
    Gersho, A., & Gray, R. M. (2012). Vector quantization and signal compression (Vol. 159). Springer Science & Business Media, Germany.Google Scholar
  17. 17.
    Abel, J., & Teahan, W. (2005). Universal text preprocessing for data compression. IEEE Transactions on Computers, 54(5), 497–507.CrossRefGoogle Scholar
  18. 18.
    Platoš, J., Snášel, V., & El-Qawasmeh, E. (2008). Compression of small text files. Advanced Engineering Informatics, 22(3), 410–417.CrossRefGoogle Scholar
  19. 19.
    Robert, L., & Nadarajan, R. (2009). Simple lossless preprocessing algorithms for text compression. IET Software, 3(1), 37–45.CrossRefGoogle Scholar
  20. 20.
    Ullah, F., & Yahya, K. M. (2012, March). A new data compression technique using an evolutionary programming approach. In International multi topic conference (pp. 524–531). Berlin/Heidelberg: Springer.Google Scholar
  21. 21.
    Mahmud, S. (2012). An improved data compression technique for general data. International Journal of Scientific and Engineering Research, 3(3), 1–4.Google Scholar
  22. 22.
    Kalajdzic, K., Ali, S. H., & Patel, A. (2015). Rapid lossless compression of short text messages. Computer Standards & Interfaces, 37, 53–59.CrossRefGoogle Scholar
  23. 23.
    De Agostino, S. (2015). The greedy approach to dictionary-based static text compression on a distributed system. Journal of Discrete Algorithms, 34, 54–61.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Che, W., Zhao, Y., Guo, H., Su, Z., & Liu, T. (2015). Sentence compression for aspect-based sentiment analysis. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 23(12), 2111–2124.CrossRefGoogle Scholar
  25. 25.
    Oswald, C., Ghosh, A. I., & Sivaselvan, B. (2015, December). Knowledge engineering perspective of text compression. In India conference (INDICON), 2015 annual IEEE (pp. 1–6). IEEE.Google Scholar
  26. 26.
    Oswald, C., & Sivaselvan, B. (2018). An optimal text compression algorithm based on frequent pattern mining. Journal of Ambient Intelligence and Humanized Computing, 9(3), 803–822.CrossRefGoogle Scholar
  27. 27.
    Shapiro, J. M. (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41(12), 3445–3462.zbMATHCrossRefGoogle Scholar
  28. 28.
    Rao, Y. R., & Eswaran, C. (1996). New bit rate reduction techniques for block truncation coding. IEEE Transactions on Communications, 44(10), 1247–1250.CrossRefGoogle Scholar
  29. 29.
    Luo, J., Chen, C. W., Parker, K. J., & Huang, T. S. (1996). Artifact reduction in low bit rate DCT-based image compression. IEEE Transactions on Image Processing, 5(9), 1363–1368.CrossRefGoogle Scholar
  30. 30.
    Wang, Z., & Zhang, D. (1998). A novel approach for reduction of blocking effects in low-bit-rate image compression. IEEE Transactions on Communications, 46(6), 732–734.CrossRefGoogle Scholar
  31. 31.
    Liu, Y. K., & Žalik, B. (2005). An efficient chain code with Huffman coding. Pattern Recognition, 38(4), 553–557.CrossRefGoogle Scholar
  32. 32.
    Sanchez-Cruz, H., & Rodriguez-Dagnino, R. M. (2005). Compressing bilevel images by means of a three-bit chain code. Optical Engineering, 44(9), 097004.CrossRefGoogle Scholar
  33. 33.
    Rad, R. M., Attar, A., & Shahbahrami, A. (2013). A predictive algorithm for multimedia data compression. Multimedia Systems, 19(2), 103–115.CrossRefGoogle Scholar
  34. 34.
    Yin, H., & Hu, H. (2014, March). An efficient lossless image compression algorithm for external memory bandwidth saving. In Data Compression Conference (DCC), 2014 (pp. 435–435). IEEE.Google Scholar
  35. 35.
    Alzahir, S., & Borici, A. (2015). An innovative lossless compression technique for discrete-color images. IEEE Transactions on Image Processing, 24(1), 44–56.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Babu, S. A., Eswaran, P., & Kumar, C. S. (2016). Lossless compression algorithm using improved RLC for grayscale image. Arabian Journal for Science and Engineering, 41(8), 3061–3070.CrossRefGoogle Scholar
  37. 37.
    Khan, A., Khan, A., Khan, M., & Uzair, M. (2017). Lossless image compression: Application of Bi-level Burrows Wheeler Compression Algorithm (BBWCA) to 2-D data. Multimedia Tools and Applications, 76(10), 12391–12416.CrossRefGoogle Scholar
  38. 38.
    Kumar, M., & Vaish, A. (2017). An efficient encryption-then-compression technique for encrypted images using SVD. Digital Signal Processing, 60, 81–89.CrossRefGoogle Scholar
  39. 39.
    Auristin, F. N., & Mali, S. D. (2016). Advanced audio compression for lossless audio coding using Ieee 1857.2. International Journal of Engineering and Computer Science, 5(9), 18124 - 18127.Google Scholar
  40. 40.
    Jain, D., & Ogale, J. V. (2017). A modified technique for sound compression using intrinsic mode functions. International Journal of Modern Electronics and Communication Engineering, 5(1), 97–102.Google Scholar
  41. 41.
    Hang, B., Wang, Y., & Kang, C. (2016). A scalable variable bit rate audio codec based on audio attention analysis. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 39(6), 114–120.Google Scholar
  42. 42.
    Watkinson, J. (2004). The MPEG handbook: MPEG-1, MPEG-2, MPEG-4, ser. Broadcasting and communications. Elsevier, Netherlands.CrossRefGoogle Scholar
  43. 43.
    Sayood, K. (2017). Introduction to data compression. Morgan Kaufmann, USA.Google Scholar
  44. 44.
    Marcelloni, F., & Vecchio, M. (2008). A simple algorithm for data compression in wireless sensor networks. IEEE Communications Letters, 12(6), 411–413.CrossRefGoogle Scholar
  45. 45.
    Kolo, J. G., Shanmugam, S. A., Lim, D. W. G., Ang, L. M., & Seng, K. P. (2012). An adaptive lossless data compression scheme for wireless sensor networks. Journal of Sensors, 2012, 1–21.CrossRefGoogle Scholar
  46. 46.
    Ruxanayasmin, B., Krishna, B. A., & Subhashini, T. (2013). Implementation of data compression techniques in mobile Ad hoc networks. International Journal of Computer Applications, 80(8), 8–12.CrossRefGoogle Scholar
  47. 47.
    Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2016). Rate-distortion balanced data compression for wireless sensor networks. IEEE Sensors Journal, 16(12), 5072–5083.CrossRefGoogle Scholar
  48. 48.
    Wu, M., Tan, L., & Xiong, N. (2016). Data prediction, compression, and recovery in clustered wireless sensor networks for environmental monitoring applications. Information Sciences, 329, 800–818.CrossRefGoogle Scholar
  49. 49.
    Uthayakumar, J., Vengattaraman, T., & Amudhavel, J. (2017). A simple lossless compression algorithm in wireless sensor networks: An application of seismic data. IIOAB Journal, 8(2), 274–280.Google Scholar
  50. 50.
    Uthayakumar, J., Vengattaraman, T., & Amudhavel, J. (2017). A simple lossless compression algorithm in wireless sensor networks: An application of plant data. IIOAB Journal, 8(2), 281–288.Google Scholar
  51. 51.
    Nielsen, M., Kamavuako, N., Andersen, M. M., Lucas, M. F., & Farina, D. (2006, May). Biomedical signal compression with optimized wavelets. In Acoustics, speech and signal processing, 2006. ICASSP 2006 proceedings. 2006 IEEE international conference on (Vol. 2, pp. II–II). IEEE.Google Scholar
  52. 52.
    Nielsen, M., Kamavuako, E. N., Andersen, M. M., Lucas, M. F., & Farina, D. (2006). Optimal wavelets for biomedical signal compression. Medical and Biological Engineering and Computing, 44(7), 561–568.CrossRefGoogle Scholar
  53. 53.
    Brechet, L., Lucas, M. F., Doncarli, C., & Farina, D. (2007). Compression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selection. IEEE Transactions on Biomedical Engineering, 54(12), 2186–2192.CrossRefGoogle Scholar
  54. 54.
    Ranjeet, K., Kumar, A., & Pandey, R. K. (2011). ECG signal compression using different techniques. In Advances in computing, communication and control (pp. 231–241). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  55. 55.
    Sevak, M. M., Thakkar, F. N., Kher, R. K., & Modi, C. K. (2012, May). CT image compression using compressive sensing and wavelet transform. In Communication systems and Network Technologies (CSNT), 2012 international conference on (pp. 138–142). IEEE.Google Scholar
  56. 56.
    Khan, T. H., & Wahid, K. A. (2014). White and narrow band image compressor based on a new color space for capsule endoscopy. Signal Processing: Image Communication, 29(3), 345–360.Google Scholar
  57. 57.
    Dutta, T. (2015). Medical data compression and transmission in wireless ad hoc networks. IEEE Sensors Journal, 15(2), 778–786.MathSciNetCrossRefGoogle Scholar
  58. 58.
    Venugopal, D., Mohan, S., & Raja, S. (2016). An efficient block based lossless compression of medical images. Optik-International Journal for Light and Electron Optics, 127(2), 754–758.CrossRefGoogle Scholar
  59. 59.
    Amri, H., Khalfallah, A., Gargouri, M., Nebhani, N., Lapayre, J. C., & Bouhlel, M. S. (2017). Medical image compression approach based on image resizing, digital watermarking and lossless compression. Journal of Signal Processing Systems, 87(2), 203–214.CrossRefGoogle Scholar
  60. 60.
    Patauner, C., Marchioro, A., Bonacini, S., Rehman, A. U., & Pribyl, W. (2011). A lossless data compression system for a real-time application in HEP data acquisition. IEEE Transactions on Nuclear Science, 58(4), 1738–1744.CrossRefGoogle Scholar
  61. 61.
    Louie, H., & Miguel, A. (2012). Lossless compression of wind plant data. IEEE Transactions on Sustainable Energy, 3(3), 598–606.CrossRefGoogle Scholar
  62. 62.
    Mahmood, A., Islam, N., Nigatu, D., & Henkel, W. (2014, August). DNA inspired bi-directional Lempel-Ziv-like compression algorithms. In Turbo codes and iterative information processing (ISTC), 2014 8th international symposium on (pp. 162–166). IEEE.Google Scholar
  63. 63.
    Muthukumaran, N., & Ravi, R. (2015). The performances analysis of fast efficient lossless satellite image compression and decompression for wavelet-based algorithm. Wireless Personal Communications, 81(2), 839–859.CrossRefGoogle Scholar
  64. 64.
    Nibali, A., & He, Z. (2015). Trajic: An effective compression system for trajectory data. IEEE Transactions on Knowledge and Data Engineering, 27(11), 3138–3151.CrossRefGoogle Scholar
  65. 65.
    Cheng, K. O., Wu, P., Law, N. F., & Siu, W. C. (2015). Compression of multiple DNA sequences using intra-sequence and inter-sequence similarities. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 12(6), 1322–1332.CrossRefGoogle Scholar
  66. 66.
    Fan, B., Aeron, S., Pedrycz, A., & Valero, H. P. (2017). On acoustic signal compression for ultrasonic borehole imaging. IEEE Transactions on Computational Imaging, 3(2), 330–343.MathSciNetCrossRefGoogle Scholar
  67. 67.
    You, C. (2018). Near-lossless compression/decompression algorithms for digital data transmitted over fronthaul in C-RAN. Wireless Networks, 24(2), 533–548.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rohit M. Thanki
    • 1
  • Ashish Kothari
    • 2
  1. 1.Faculty of Technology and EngineeringC. U. Shah UniversityWadhwan CityIndia
  2. 2.Atmiya UniversityRajkotIndia

Personalised recommendations