Advertisement

Social Network Overview

  • Jiawei Zhang
  • Philip S. Yu
Chapter

Abstract

Online social networks (OSNs) denote the online platforms that are used by people to build social connections with the other people, who may share similar personal or career interests, backgrounds, or real-life connections. Online social networking sites vary a lot and there exist a large number of online social sites of different categories, including online sharing sites, online publishing sites, online networking sites, online messaging sites, and online collaborating sites. Each category of these online social networks can provide specific featured services for the customers. For instance, Facebook allows users to socialize with each other via making friends, posting text, sharing photos and videos; Twitter focuses on providing micro-blogging services for users to write/read the latest news and messages; Foursquare is a location-based social network offering location-oriented services; and Instagram is a photo and video sharing social site among friends or to the public.

References

  1. 1.
    L. Adamic, E. Adar, Friends and neighbors on the Web. Soc. Netw. 25(3), 211–230 (2003)CrossRefGoogle Scholar
  2. 2.
    L. Adamic, R. Lukose, A. Puniyani, B. Huberman, Search in power-law networks. Phys. Rev. E 64, 046135 (2001)CrossRefGoogle Scholar
  3. 3.
    M. Bagella, L. Becchetti, The determinants of motion picture box office performance: evidence from movies produced in Italy. J. Cult. Econ. 23(4), 237–256 (1999)CrossRefGoogle Scholar
  4. 4.
    A. Barabasi, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, The architecture of complex weighted networks. Proc. Natl. Acad. Sci. 101(11), 3747–3752 (2004)CrossRefGoogle Scholar
  6. 6.
    H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wagner, R. Werneck, Route planning in transportation networks (2015). arXiv:1504.05140Google Scholar
  7. 7.
    M. Berry, S. Dumais, G. O’Brien, Using linear algebra for intelligent information retrieval. SIAM Rev. 37(4), 573–595 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    C. Bettstetter, On the minimum node degree and connectivity of a wireless multihop network, in Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing (ACM, New York, 2002)Google Scholar
  9. 9.
    B. Bollobás, S. Janson, O. Riordan, The phase transition in inhomogeneous random graphs. Random Struct. Algoritm. 31(1), 3–122 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    O. Bonaventure, Computer Networking: Principles, Protocols, and Practice (The Saylor Foundation, Washington, 2011)Google Scholar
  11. 11.
    S. Borgatti, M. Everett, A graph-theoretic perspective on centrality. Soc. Netw. 28(4), 466–484 (2006)CrossRefGoogle Scholar
  12. 12.
    U. Brandes, T. Erlebach, Network Analysis: Methodological Foundations. Lecture Notes in Computer Science (Springer, Berlin, 2005)Google Scholar
  13. 13.
    A. Clauset, C. Shalizi, M. Newman, Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    P. Erdos, A. Renyi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5(1), 17–60 (1960)MathSciNetzbMATHGoogle Scholar
  15. 15.
    F. Fouss, A. Pirotte, J. Renders, M. Saerens, Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19, 355–369 (2007)CrossRefGoogle Scholar
  16. 16.
    L. Freeman, A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)CrossRefGoogle Scholar
  17. 17.
    E. Gilbert, Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)zbMATHCrossRefGoogle Scholar
  18. 18.
    T. Gruber, Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum. Comput. Stud. 43(5–6), 907–928 (1995)CrossRefGoogle Scholar
  19. 19.
    F. Harary, H. Kommel, Matrix measures for transitivity and balance. J. Math. Sociol. 6(2), 199–210 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    J. Harmon, The psychology of interpersonal relations. Soc. Forces 37(3), 272–273 (1959)CrossRefGoogle Scholar
  21. 21.
    J. Heidemann, M. Klier, F. Probst, Online social networks: a survey of a global phenomenon. Comput. Netw. 56(18), 3866–3878 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Horton, R. Wohl, Mass communication and para-social interaction. Psychiatry 19(3), 215–229 (1956)CrossRefGoogle Scholar
  23. 23.
    A. Huang, Similarity measures for text document clustering, in Proceedings of the Sixth New Zealand Computer Science Research Student Conference (NZCSRSC2008) (Christchurch, 2008), pp. 49–56Google Scholar
  24. 24.
    P. Jaccard, Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaud. Sci. Nat. 37(142), 547–579 (1901)Google Scholar
  25. 25.
    L. Katz, A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)zbMATHCrossRefGoogle Scholar
  26. 26.
    D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2003), pp. 137–146Google Scholar
  27. 27.
    J. Kleinberg, Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    J. Kleinberg, The small-world phenomenon: an algorithmic perspective, in Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing (ACM, New York, 2000), pp. 163–170Google Scholar
  29. 29.
    X. Kong, J. Zhang, P. Yu, Inferring anchor links across multiple heterogeneous social networks, in Proceedings of the 22nd ACM International Conference on Information and Knowledge Management (ACM, New York, 2013), pp. 179–188Google Scholar
  30. 30.
    T. Lappas, K. Liu, E. Terzi, Finding a team of experts in social networks, in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2009), pp. 467–476Google Scholar
  31. 31.
    E. Leicht, P. Holme, M. Newman, Vertex similarity in networks. Phys. Rev. E 73, 026120 (2006)CrossRefGoogle Scholar
  32. 32.
    J. Leskovec, D. Huttenlocher, J. Kleinberg, Signed networks in social media, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2010), pp. 1361–1370Google Scholar
  33. 33.
    D. Liben-Nowell, J. Kleinberg, The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  34. 34.
    Y. Liu, J. Zhang, C. Zhang, P. Yu, Data-driven blockbuster planning on online movie knowledge library, in 2018 IEEE International Conference on Big Data (IEEE, Piscataway, 2018)Google Scholar
  35. 35.
    F. Lorrain, H. White, Structural equivalence of individuals in social networks. J. Math. Sociol. 1, 49–80 (1971)CrossRefGoogle Scholar
  36. 36.
    L. Lovász, Random walks on graphs: a survey, in Combinatorics, Paul Erdős is Eighty (1996)Google Scholar
  37. 37.
    Q. Mei, D. Zhou, K. Church, Query suggestion using hitting time, in Proceedings of the 17th ACM conference on Information and Knowledge Management (ACM, New York, 2008)Google Scholar
  38. 38.
    A. Mislove, M. Marcon, K. Gummadi, P. Druschel, B. Bhattacharjee, Measurement and analysis of online social networks, in Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement (ACM, New York, 2007), pp. 29–42Google Scholar
  39. 39.
    M. Newman, Models of the small world. J. Stat. Phys. 101(3–4), 819–841 (2000)zbMATHCrossRefGoogle Scholar
  40. 40.
    M. Newman, Networks: An Introduction (Oxford University Press, New York, 2010)zbMATHCrossRefGoogle Scholar
  41. 41.
    J. Pan, H. Yang, C. Faloutsos, P. Duygulu, Automatic multimedia cross-modal correlation discovery, in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2004), pp. 653–658Google Scholar
  42. 42.
    S. Pillai, T. Suel, S. Cha, The Perron-Frobenius theorem: some of its applications. IEEE Signal Process. Mag. 22(2), 62–75 (2005)CrossRefGoogle Scholar
  43. 43.
    A. Pothen, H. Simon, K. Liou, Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    E. Ravasz, A. Somera, D. Mongru, Z. Oltvai, A. Barabási, Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)CrossRefGoogle Scholar
  45. 45.
    M. Riedl, M. Young, Narrative planning: balancing plot and character. J. Artif. Int. Res. 39(1), 217–267 (2010)zbMATHGoogle Scholar
  46. 46.
    B. Ruhnau, Eigenvector-centrality a node-centrality? Soc. Netw. 22(4), 357–365 (2000)CrossRefGoogle Scholar
  47. 47.
    P. Savalle, E. Richard, N. Vayatis, Estimation of simultaneously sparse and low rank matrices, in Proceedings of the 29th International Conference on Machine Learning (2012)Google Scholar
  48. 48.
    C. Shi, Y. Li, J. Zhang, Y. Sun, P. S. Yu, A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng. 29, 17–37 (2017)CrossRefGoogle Scholar
  49. 49.
    R. Solomonoff, A. Rapoport, Connectivity of random nets. Bull. Math. Biol. 13, 107–117 (1951)MathSciNetGoogle Scholar
  50. 50.
    T. Sørensen, A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol. Skr. 5, 1–34 (1948)Google Scholar
  51. 51.
    Y. Sun, J. Han, Mining Heterogeneous Information Networks: Principles and Methodologies (Morgan & Claypool Publishers, 2012)Google Scholar
  52. 52.
    Y. Sun, R. Barber, M. Gupta, C. C. Aggarwal, J. Han, Co-author relationship prediction in heterogeneous bibliographic networks, in 2011 International Conference on Advances in Social Networks Analysis and Mining (IEEE, Piscataway, 2011)Google Scholar
  53. 53.
    Y. Sun, J. Han, X. Yan, P. Yu, T. Wu, Pathsim: meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endowment 4(11), 992–1003 (2011)Google Scholar
  54. 54.
    J. Tang, T. Lou, J. Kleinberg, Inferring social ties across heterogeneous networks, in Proceedings of the Fifth ACM International Conference on Web Search and Data Mining (ACM, New York, 2012), pp. 743–752Google Scholar
  55. 55.
    M. van Steen, Graph Theory and Complex Networks: An Introduction (Maarten van Steen, Lexington, 2010)Google Scholar
  56. 56.
    Z. Wang, J. Liao, Q. Cao, H. Qi, Z. Wang, Friendbook: a semantic-based friend recommendation system for social networks. IEEE Trans. Mob. Comput. 14(3), 538–551 (2015)CrossRefGoogle Scholar
  57. 57.
    S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications (Cambridge University Press, Cambridge, 1994)zbMATHCrossRefGoogle Scholar
  58. 58.
    D. Watts, S. Strogatz, Collective dynamics of small-world networks. Nature 393, 440–442 (1998)zbMATHCrossRefGoogle Scholar
  59. 59.
    K. Wilcox, A.T. Stephen, Are close friends the enemy? Online social networks, self-esteem, and self-control. J. Consum. Res. 40(1), 90–103 (2012)CrossRefGoogle Scholar
  60. 60.
    R. Wilson, Introduction to Graph Theory (Wiley, London, 1986)Google Scholar
  61. 61.
    X. Xie, Potential friend recommendation in online social network, in 2010 IEEE/ACM International Conference on Green Computing and Communications & International Conference on Cyber, Physical and Social Computing (IEEE, Piscataway, 2010). https://ieeexplore.ieee.org/abstract/document/5724926 Google Scholar
  62. 62.
    J. Yang, J. McAuley, J. Leskovec, Community detection in networks with node attributes, in 2013 IEEE 13th International Conference on Data Mining (ICDM) (IEEE, Piscataway, 2013)Google Scholar
  63. 63.
    Y. Yao, H. Tong, X. Yan, F. Xu, J. Lu, Matri: a multi-aspect and transitive trust inference model, in Proceedings of the 22nd International Conference on World Wide Web (ACM, New York, 2013), pp. 1467–1476Google Scholar
  64. 64.
    J. Ye, H. Cheng, Z. Zhu, M. Chen, Predicting positive and negative links in signed social networks by transfer learning, in Proceedings of the 22nd International Conference on World Wide Web (ACM, New York, 2013), pp. 1477–1488Google Scholar
  65. 65.
    R. Zafarani, M. Abbasi, H. Liu, Social Media Mining: An Introduction (Cambridge University Press, New York, 2014)CrossRefGoogle Scholar
  66. 66.
    J. Zhang, Social network fusion and mining: a survey (2018). arXiv preprint. arXiv:1804.09874Google Scholar
  67. 67.
    J. Zhang, P. Yu, Link Prediction Across Heterogeneous Social Networks: A Survey (University of Illinois, Chicago, 2014)Google Scholar
  68. 68.
    J. Zhang, P. Yu, Community detection for emerging networks, in Proceedings of the 2015 SIAM International Conference on Data Mining (Society for Industrial and Applied Mathematics, Philadelphia, 2015), pp. 127–135CrossRefGoogle Scholar
  69. 69.
    J. Zhang, P. Yu, Multiple anonymized social networks alignment, in 2015 IEEE International Conference on Data Mining (IEEE, Piscataway, 2015)Google Scholar
  70. 70.
    J. Zhang, P. Yu, PCT: partial co-alignment of social networks, in Proceedings of the 25th International Conference on World Wide Web (International World Wide Web Conferences Steering Committee, Geneva, 2016), pp. 749–759Google Scholar
  71. 71.
    J. Zhang, X. Kong, P. Yu, Predicting social links for new users across aligned heterogeneous social networks (2013). arXiv preprint. arXiv:1310.3492Google Scholar
  72. 72.
    J. Zhang, X. Kong, P. Yu, Transferring heterogeneous links across location-based social networks, in Proceedings of the 7th ACM International Conference on Web Search and Data Mining (ACM, New York, 2014), pp. 303–312Google Scholar
  73. 73.
    J. Zhang, P. Yu, Z. Zhou, Meta-path based multi-network collective link prediction, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2014), pp. 1286–1295Google Scholar
  74. 74.
    J. Zhang, P. Yu, Y. Lv, Organizational chart inference, in Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2015), pp. 1435–1444Google Scholar
  75. 75.
    J. Zhang, S. Wang, Q. Zhan, P. Yu, Intertwined viral marketing in social networks, in 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (IEEE, Piscataway, 2016)Google Scholar
  76. 76.
    J. Zhang, P. Yu, Y. Lv, Q. Zhan, Information diffusion at workplace, in Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (ACM, New York, 2016), pp. 1673–1682Google Scholar
  77. 77.
    J. Zhang, Q. Zhan, L. He, C. Aggarwal, P. Yu, Trust hole identification in signed networks, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases (Springer, Berlin, 2016), pp. 697–713Google Scholar
  78. 78.
    J. Zhang, P. Yu, Y. Lv, Enterprise employee training via project team formation, in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (ACM, New York, 2017), pp. 3–12Google Scholar
  79. 79.
    J. Zhang, C. Aggarwal, P. Yu, Rumor initiator detection in infected signed networks, in 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS) (IEEE, Piscataway, 2017)Google Scholar
  80. 80.
    T. Zhou, L. Lü, Y. Zhang, Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jiawei Zhang
    • 1
  • Philip S. Yu
    • 2
  1. 1.Department of Computer ScienceFlorida State UniversityTallahasseeUSA
  2. 2.Department of Computer ScienceUniversity of IllinoisChicagoUSA

Personalised recommendations