Advertisement

Recent Progress in Applied Nanomaterials

  • R. Mankamna Kumari
  • Nikita Sharma
  • Geeta Arya
  • Surendra Nimesh
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Recent advancements in the development of nanomaterials with unique properties have been gaining grounds that are capable of targeting toward specific applications. Basically, nanomaterials are materials with size ranging from few nanometres to 100 nm. The small size and tunable properties of the nanomaterials make it favourable for various applications including medicine, environmental science, optics and microelectronics. Recently, intensive development in the field of nanotechnology is being carried out in industries as well as university research facilities to bring forward cutting edge approaches for applications-oriented research. Thus, nanomaterials with remarkable properties and multifunctional properties are applied in extremely diverse fields including plant protection and production, an under-explored area in research community. Hence, nanomaterials have escalated to the stage of commercialization in different countries: the USA, Japan, Singapore, Malaysia, Korea, Australia and Germany. The current chapter is mainly intended to summarize the recent developments in the field of applied nanomaterials.

Keywords

Nanoparticles Nanofertilizers Nanopesticides Nanosensors Chitosan Liposomes Dendrimers Quantum dots 

References

  1. Abbas K, Saleh A, Mohamed A, MohdAzhan N (2009) The recent advances in the nanotechnology and its applications in food processing: a review. J Food Agric Environ 7:14–17Google Scholar
  2. Abruzzo A, Zuccheri G, Belluti F, Provenzano S, Verardi L, Bigucci F, Cerchiara T, Luppi B, Calonghi N (2016) Chitosan nanoparticles for lipophilic anticancer drug delivery: development, characterization and in vitro studies on HT29 cancer cells. Colloids Surf B: Biointerfaces 145:362–372PubMedCrossRefPubMedCentralGoogle Scholar
  3. Adhikari T, Sarkar D, Mashayekhi H, Xing B (2015) Growth and enzymatic activity of maize (L.) plant: Solution culture test for copper dioxide nano particles. Journal of Plant Nutrition 39:99–115CrossRefGoogle Scholar
  4. Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3:43–55Google Scholar
  5. Arya G, Kumar N, Gupta N, Kumar A, Nimesh S (2016) Antibacterial potential of silver nanoparticles biosynthesised using Canarium ovatum leaves extract. IET Nanobiotechnol 11:506–511CrossRefGoogle Scholar
  6. Arya G, Kumari RM, Gupta N, Kumar A, Chandra R, Nimesh S (2018) Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: reaction optimization, antimicrobial and catalytic activities. Artif Cells Nanomed Biotechnol 46:985–993PubMedCrossRefPubMedCentralGoogle Scholar
  7. Austin LA, Mackey MA, Dreaden EC, El-Sayed MA (2014) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88:1391–1417PubMedPubMedCentralCrossRefGoogle Scholar
  8. Avasare V, Zhang Z, Avasare D, Khan I, Qurashi A (2015) Room-temperature synthesis of TiO2 nanospheres and their solar driven photoelectrochemical hydrogen production. Int J Energy Res 39:1714–1719CrossRefGoogle Scholar
  9. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474CrossRefGoogle Scholar
  10. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612.  https://doi.org/10.1021/acs.langmuir.5b03081CrossRefPubMedGoogle Scholar
  11. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.  https://doi.org/10.3389/fmicb.2016.01984CrossRefPubMedPubMedCentralGoogle Scholar
  12. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65.  https://doi.org/10.3389/fchem.2019.00065
  13. Bae SE, Son JS, Park K, Han DK (2009) Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J Control Release 133:37–43PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bangham A, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–IN227PubMedCrossRefPubMedCentralGoogle Scholar
  15. Barenholz YC (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bariana H, Shannon A, Chu P, Waterhouse PM (1994) Detection of five seedborne legume viruses in one sensitive multiplex polymerase chain reaction test. Phytopathology 84:1201–1205CrossRefGoogle Scholar
  17. Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127:11364–11371PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nano-particles-A recent approach to insect pest control. Afr J Biotechnol 9:3489–3493Google Scholar
  20. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319CrossRefGoogle Scholar
  21. Bin Hussein MZ, Zainal Z, Yahaya AH, Foo DWV (2002) Controlled release of a plant growth regulator, α-naphthaleneacetate from the lamella of Zn–Al-layered double hydroxide nanocomposite. J Control Release 82:417–427PubMedCrossRefPubMedCentralGoogle Scholar
  22. Boehm A-LLR, Zerrouk R, Fessi H (2000) Poly epsilon-caprolactone nanoparticles containing a poorly soluble pesticide: formulation and stability study. J Microencapsul 17:195–205CrossRefGoogle Scholar
  23. Boehm A, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environmental Chemistry Letters 14:229–235CrossRefGoogle Scholar
  25. Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469:393PubMedCrossRefPubMedCentralGoogle Scholar
  26. Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry 95:605–612Google Scholar
  27. Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Alitheen NB, Hussein MZ, Abu N, Mohammed NE, Nordin N, Zamberi NR (2016) In vivo tumor targeting and anti-tumor effects of 5-fluororacil loaded, folic acid targeted quantum dot system. J Colloid Interface Sci 480:146–158PubMedCrossRefPubMedCentralGoogle Scholar
  28. Cabedo L, Luis Feijoo J, Pilar Villanueva M, Lagarón JM, Giménez E (2006) Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. In: Macromolecular symposia, R. Legras, Phillippe Dubois, G. Groeninckx, Robert Jerome. vol 1. Wiley Online Library, p 191–197Google Scholar
  29. Caboni P, Sammelson RE, Casida JE (2003) Phenylpyrazole insecticide photochemistry, metabolism, and GABAergic action: ethiprole compared with fipronil. J Agric Food Chem 51:7055–7061PubMedCrossRefPubMedCentralGoogle Scholar
  30. Cai X, Luo Y, Zhang W, Du D, Lin Y (2016) pH-sensitive ZnO quantum dots–doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl Mater Interfaces 8:22442–22450PubMedCrossRefPubMedCentralGoogle Scholar
  31. Canel C (2006) Micro and nanotechnologies for food safety and quality applications. MNE 6:219–225Google Scholar
  32. Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO 2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449CrossRefGoogle Scholar
  33. Chai F, Sun L, He X, Li J, Liu Y, Xiong F, Ge L, Webster TJ, Zheng C (2017) Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications. Int J Nanomedicine 12:1791PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25:241–258CrossRefGoogle Scholar
  35. Chen C-C, Chueh J-Y, Tseng H, Huang H-M, Lee S-Y (2003) Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24:1167–1173PubMedCrossRefGoogle Scholar
  36. Chen MY, Millwood IY, Wand H, Poynten M, Law M, Kaldor JM, Wesselingh S, Price CF, Clark LJ, Paull JR (2009) A randomized, controlled trial of the safety of candidate microbicide SPL7013 gel when applied to the penis. J Acquir Immune Defic Syndr. (1999) 50:375PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chen P-G, Huang Z-H, Sun Z-Y, Gao Y, Liu Y-F, Shi L, Chen Y-X, Zhao Y-F, Li Y-M (2017) Chitosan nanoparticles based nanovaccines for cancer immunotherapy. Pure Appl Chem 89:931–939CrossRefGoogle Scholar
  38. Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22CrossRefGoogle Scholar
  39. Chhipa H, Kaushik N (2015) Development of nano-bio-pesticide using Iron and Eucalyptus plant extract and their application in pest management. In: Conference Proceeding of symposium on recent advances in biotechnology for food and fuel, TERI, New Delhi 19–20 Nov 2015Google Scholar
  40. Cho E-K, Goodman RM (1979) Strains of soybean mosaic virus: classification based on virulence in resistant soybean cultivars. Phytopathology 69:467–470CrossRefGoogle Scholar
  41. Choy J-H, Choi S-J, Oh J-M, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36:122–132CrossRefGoogle Scholar
  42. Chu TC, Shieh F, Lavery LA, Levy M, Richards-Kortum R, Korgel BA, Ellington AD (2006) Labeling tumor cells with fluorescent nanocrystal–aptamer bioconjugates. Biosens Bioelectron 21:1859–1866PubMedCrossRefGoogle Scholar
  43. Conn J, Oyasu R, Welsh M, Beal JM (1974) Vicryl (polyglactin 910) synthetic absorbable sutures. Am J Surg 128:19–23PubMedCrossRefPubMedCentralGoogle Scholar
  44. De Azeredo HM (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253CrossRefGoogle Scholar
  45. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176PubMedCrossRefGoogle Scholar
  46. Delfani M, Baradarn Firouzabadi M, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540CrossRefGoogle Scholar
  47. Dingman J (2008) Guest commentary: nanotechnology: its impact on food safety. J Environ Health 70:47–50PubMedGoogle Scholar
  48. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49PubMedCrossRefGoogle Scholar
  49. Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106PubMedCrossRefGoogle Scholar
  50. Formiga FR, Pelacho B, Garbayo E, Abizanda G, Gavira JJ, Simon-Yarza T, Mazo M, Tamayo E, Jauquicoa C, Ortiz-de-Solorzano C (2010) Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia–reperfusion model. J Control Release 147:30–37PubMedCrossRefGoogle Scholar
  51. Fratoddi I, Venditti I, Cametti C, Russo MV (2015) How toxic are gold nanoparticles? The state-of-the-art. Nano Res 8:1771–1799CrossRefGoogle Scholar
  52. Frede A, Neuhaus B, Klopfleisch R, Walker C, Buer J, Mueller W, Epple M, Westendorf AM (2016) Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo. J Control Release 222:86–96PubMedCrossRefGoogle Scholar
  53. Gabaldón JA, Maquieira A, Puchades R (1999) Current trends in immunoassay-based kits for pesticide analysis. Crit Rev Food Sci Nutr 39:519–538PubMedCrossRefGoogle Scholar
  54. García M, Aleixandre M, Gutiérrez J, Horrillo M (2006) Electronic nose for wine discrimination. Sensors Actuators B Chem 113:911–916CrossRefGoogle Scholar
  55. Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652Google Scholar
  56. Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Advances 3:21743CrossRefGoogle Scholar
  57. Golub JS, Y-t K, Duvall CL, Bellamkonda RV, Gupta D, Lin AS, Weiss D, Robert Taylor W, Guldberg RE (2010) Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol 298:H1959–H1965PubMedPubMedCentralCrossRefGoogle Scholar
  58. Grayson SM, Frechet JM (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101:3819–3868PubMedCrossRefGoogle Scholar
  59. Grinstaff MW (2002) Biodendrimers: new polymeric biomaterials for tissue engineering. Chem Eur J 8:2838–2846CrossRefGoogle Scholar
  60. Hainfeld J, Slatkin D, Focella T, Smilowitz H (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253PubMedCrossRefGoogle Scholar
  61. Hall RH (2002) Biosensor technologies for detecting microbiological foodborne hazards. Microbes Infect 4:425–432PubMedCrossRefGoogle Scholar
  62. Han G, Martin CT, Rotello VM (2006) Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents. Chem Biol Drug Des 67:78–82PubMedCrossRefGoogle Scholar
  63. Han B, Gao SZ, Zhang XH, Tian HB, Wang HT, Shang ZH (2010) Preparation of aclarubicin PLGA nanospheres and related in vitro/in vivo studies. J Appl Polym Sci 117:2754–2761CrossRefGoogle Scholar
  64. Han H, Valdepérez D, Jin Q, Yang B, Li Z, Wu Y, Pelaz B, Parak WJ, Ji J (2017) Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy. ACS Nano 11:1281–1291PubMedCrossRefGoogle Scholar
  65. Hawker CJ, Wooley KL, Frechet JM (1993) Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J Chem Soc Perkin 1:1287–1297CrossRefGoogle Scholar
  66. Ho VA, Le PT, Nguyen TP, Nguyen CK, Nguyen VT, Tran VQ (2015) Silver core-shell nanoclusters exhibiting strong growth inhibition of plant-pathogenic fungi. Journal of Nanomaterials 2015:1–7Google Scholar
  67. Ilium L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15:1326–1331CrossRefGoogle Scholar
  68. Jain K (2008) A handbook of nanomedicine. Humana/Springer, TotowaGoogle Scholar
  69. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429CrossRefGoogle Scholar
  70. John D (2010) New and emerging applications of nanotechnology in our food supply. In: AT IFT international food nanoscience conference, p 25–28Google Scholar
  71. Joshi P, Chakraborti S, Ramirez-Vick JE, Ansari Z, Shanker V, Chakrabarti P, Singh SP (2012) The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids Surf B: Biointerfaces 95:195–200PubMedCrossRefGoogle Scholar
  72. Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132:1517–1519PubMedCrossRefGoogle Scholar
  73. Kawashima Y (2001) Panoparticulate systems for improved drug delivery. Adv Drug Deliv Rev 47:1–2PubMedCrossRefGoogle Scholar
  74. Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transf 111:1–35CrossRefGoogle Scholar
  75. Kim G, Han H (2017) Abstract 2183: Targeted delivery of hyaluronic acid-labeled chitosan nanoparticles against CD44 overexpressed endothelial cell for tumor angiogenesis therapy. Cancer Research 77(13 Supplement):2183–2183CrossRefGoogle Scholar
  76. Kim K, Kim JH, Park H, Kim Y-S, Park K, Nam H, Lee S, Park JH, Park R-W, Kim I-S (2010) Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 146:219–227PubMedCrossRefGoogle Scholar
  77. Kinberger GA, Taulane JP, Goodman M (2006) The design, synthesis, and characterization of a PAMAM-based triple helical collagen mimetic dendrimer. Tetrahedron 62:5280–5286CrossRefGoogle Scholar
  78. Kloepfer J, Mielke R, Wong M, Nealson K, Stucky G, Nadeau J (2003) Quantum dots as strain-and metabolism-specific microbiological labels. Appl Environ Microbiol 69:4205–4213PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kojima C, Kono K, Maruyama K, Takagishi T (2000) Synthesis of polyamidoamine dendrimers having poly (ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 11:910–917PubMedCrossRefGoogle Scholar
  80. Krishnaraj C, Jagan E, Ramachandran R, Abirami S, Mohan N, Kalaichelvan P (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47:651–658CrossRefGoogle Scholar
  81. Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  82. Kumar CS (2007) Nanomaterials for biosensors. Wiley, OxfordGoogle Scholar
  83. Kumar A, Zhang X, Liang X-J (2013) Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv 31:593–606PubMedCrossRefGoogle Scholar
  84. Kumari RM, Thapa N, Gupta N, Kumar A, Nimesh S (2016) Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract. Adv Nat Sci Nanosci Nanotechnol 7:045009CrossRefGoogle Scholar
  85. Lange D, Hagleitner C, Hierlemann A, Brand O, Baltes H (2002) Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds. Anal Chem 74:3084–3095PubMedCrossRefGoogle Scholar
  86. Lasch J, Weissig V, Brandl M (2003) Preparation of liposomes. In: Liposomes: a practical approach, Vladimir Torchilin, Volkmar Weissig. vol 2(264). p 24–25. OUP Oxford, 2003Google Scholar
  87. Lee SJ, Huh MS, Lee SY, Min S, Lee S, Koo H, Chu JU, Lee KE, Jeon H, Choi Y (2012) Tumor-homing poly-siRNA/glycol chitosan self-cross-linked nanoparticles for systemic siRNA delivery in cancer treatment. Angew Chem Int Ed 51:7203–7207CrossRefGoogle Scholar
  88. Lei Y-M, Huang W-X, Zhao M, Chai Y-Q, Yuan R, Zhuo Y (2015) Electrochemiluminescence resonance energy transfer system: mechanism and application in ratiometric aptasensor for lead ion. Anal Chem 87:7787–7794PubMedCrossRefPubMedCentralGoogle Scholar
  89. Leonard R, Williams S, Tulpule A, Levine A, Oliveros S (2009) Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet™). Breast 18:218–224PubMedCrossRefPubMedCentralGoogle Scholar
  90. Li X, Kang T, Cho WJ, Lee JK, Ha CS (2001) Preparation and characterization of poly (butyleneterephthalate)/organoclay nanocomposites. Macromol Rapid Commun 22:1306–1312CrossRefGoogle Scholar
  91. Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246PubMedCrossRefPubMedCentralGoogle Scholar
  92. Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8:10682–10686PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedCrossRefPubMedCentralGoogle Scholar
  94. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci & Tech 42:5580–5585Google Scholar
  95. Lisa M, Chouhan R, Vinayaka A, Manonmani H, Thakur M (2009) Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227PubMedCrossRefPubMedCentralGoogle Scholar
  96. Lister RM (1978) Application of the enzyme-linked immunosorbent assay for detecting viruses in soybean seed and plants. Phytopathology 68:1393–1400CrossRefGoogle Scholar
  97. Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686PubMedPubMedCentralCrossRefGoogle Scholar
  98. Liu Y, Yan L, Heiden P, Laks P (2001) Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci 79:458–465CrossRefGoogle Scholar
  99. Liu X, Zhang F, Zhang S, He X, Wang R, Fei Z, Wang Y (2005) Responses of peanut to nano-calcium carbonate. Plant Nutr Fertil Sci 11:385–389Google Scholar
  100. Lopez-Rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17:567–575CrossRefGoogle Scholar
  101. Madani F, Esnaashari SS, Mujokoro B, Dorkoosh F, Khosravani M, Adabi M (2018) Investigation of effective parameters on size of paclitaxel loaded PLGA nanoparticles. Adv Pharm Bull 8:77PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mahajan P, Dhoke S, Khanna A (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:7CrossRefGoogle Scholar
  103. Manson J, Kumar D, Meenan BJ, Dixon D (2011) Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull 44:99–105CrossRefGoogle Scholar
  104. Mattos BD, Magalhães WLE (2016) Biogenic nanosilica blended by nanofibrillated cellulose as support for slow-release of tebuconazole. Journal of Nanoparticle Research 18 (9)Google Scholar
  105. McIntosh CM, Esposito EA, Boal AK, Simard JM, Martin CT, Rotello VM (2001) Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 123:7626–7629PubMedCrossRefPubMedCentralGoogle Scholar
  106. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630PubMedCrossRefPubMedCentralGoogle Scholar
  107. Millán G, Agosto F, Vázquez M (2008) Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. Cienc Investig Agrar 35:293–302Google Scholar
  108. Min KH, Park K, Kim Y-S, Bae SM, Lee S, Jo HG, Park R-W, Kim I-S, Jeong SY, Kim K (2008) Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release 127:208–218PubMedCrossRefPubMedCentralGoogle Scholar
  109. Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Clinical translation of nanomedicine. Chem Rev 115:11147–11190PubMedPubMedCentralCrossRefGoogle Scholar
  110. Modun B, Morrissey J, Williams P (2000) The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol 8:231–237PubMedCrossRefPubMedCentralGoogle Scholar
  111. Momin JK, Jayakumar C, Prajapati JB (2013) Potential of nanotechnology in functional foods. Emirates J Food Agric 25:10CrossRefGoogle Scholar
  112. Morgan MT, Carnahan MA, Immoos CE, Ribeiro AA, Finkelstein S, Lee SJ, Grinstaff MW (2003) Dendritic molecular capsules for hydrophobic compounds. J Am Chem Soc 125:15485–15489PubMedCrossRefPubMedCentralGoogle Scholar
  113. Morgan MT, Nakanishi Y, Kroll DJ, Griset AP, Carnahan MA, Wathier M, Oberlies NH, Manikumar G, Wani MC, Grinstaff MW (2006) Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res 66:11913–11921PubMedCrossRefPubMedCentralGoogle Scholar
  114. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453PubMedCrossRefPubMedCentralGoogle Scholar
  115. Murry DJ, Blaney SM (2000) Clinical pharmacology of encapsulated sustained-release cytarabine. Ann Pharmacother 34:1173–1178PubMedCrossRefPubMedCentralGoogle Scholar
  116. Najafi Disfani M, Mikhak A, Kassaee MZ, Maghari A (2017) Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch Acker Pflanzenbau Bodenkd 63:817–826Google Scholar
  117. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230PubMedCrossRefPubMedCentralGoogle Scholar
  118. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against. ACS Nano 7:8972–8980CrossRefGoogle Scholar
  119. O’loughlin J, Millwood IY, McDonald HM, Price CF, Kaldor JM, Paull JR (2010) Safety, tolerability, and pharmacokinetics of SPL7013 gel (VivaGel®): a dose ranging, phase I study. Sex Transm Dis 37:100–104PubMedCrossRefGoogle Scholar
  120. Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103:228–236PubMedPubMedCentralCrossRefGoogle Scholar
  121. Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545PubMedCrossRefGoogle Scholar
  122. Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on: A detailed molecular, biochemical, and biophysical study. Environ Sci & Tech 47:13122–13131Google Scholar
  123. Prasad R, Bagde U, Varma A (2012) An overview of intellectual property rights in relation to agricultural biotechnology. Afr J Biotechnol 11:13476–13752CrossRefGoogle Scholar
  124. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  125. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363CrossRefGoogle Scholar
  126. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014.  https://doi.org/10.3389/fmicb.2017.01014CrossRefPubMedPubMedCentralGoogle Scholar
  127. Prasad R, Pandey R, Varma A, Barman I (2017b) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, Wallingford, pp 53–70Google Scholar
  128. Prasad R, Aranda E (2018) Approaches in bioremediation. Springer International Publishing. https://www.springer.com/de/book/9783030023683
  129. Putney SD, Burke PA (1998) Improving protein therapeutics with sustained-release formulations. Nat Biotechnol 16:153PubMedCrossRefGoogle Scholar
  130. Qureshi S (2011) Nanotechnology based drug delivery system. J Res Opin 1:161–165Google Scholar
  131. Racke KD (2003) Development and registration of pesticides with reduced risk characteristics. In: Chemistry of crop protection: progress and prospects in science and regulation, 1:322–333Google Scholar
  132. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57CrossRefGoogle Scholar
  133. Rajesh, S., et al., Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. Journal of Biopesticides, 2012. 5: p. 119.Google Scholar
  134. Rao W, Wang H, Han J, Zhao S, Dumbleton J, Agarwal P, Zhang W, Zhao G, Yu J, Zynger DL (2015) Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 9:5725–5740PubMedCrossRefPubMedCentralGoogle Scholar
  135. Ritter SK (2005) An eye on food. Chem Eng News 83:28–34CrossRefGoogle Scholar
  136. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030PubMedCrossRefPubMedCentralGoogle Scholar
  137. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules 62:677–683PubMedCrossRefGoogle Scholar
  138. Sekhon BS (2010) Food nanotechnology–an overview. Nanotechnol Sci Appl 3:1PubMedPubMedCentralGoogle Scholar
  139. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148CrossRefGoogle Scholar
  140. Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I, Baker JR Jr (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3:1245–1252PubMedCrossRefPubMedCentralGoogle Scholar
  141. Shi K, Kokini JL, Huang Q (2009) Engineering zein films with controlled surface morphology and hydrophilicity. J Agric Food Chem 57:2186–2192PubMedCrossRefPubMedCentralGoogle Scholar
  142. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58PubMedCrossRefPubMedCentralGoogle Scholar
  143. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17PubMedCrossRefGoogle Scholar
  144. Singh A, Singh A (2017) 7P anti-breast cancer activity of folate-chitosan nanoparticles loaded with irinotecan. Ann Oncol 28:mdx652. 006Google Scholar
  145. Slingerland M, Guchelaar H-J, Gelderblom H (2012) Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today 17:160–166PubMedCrossRefGoogle Scholar
  146. Smith K, Evans DA, El-Hiti GA (2008) Role of modern chemistry in sustainable arable crop protection. Philos Trans R Soc B 363:623–637CrossRefGoogle Scholar
  147. Sorlier P, Denuzière A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2:765–772PubMedCrossRefGoogle Scholar
  148. Srilatha B (2011) Nanotechnology in agriculture. J Nanomed Nanotechnol 2:5Google Scholar
  149. Storm R, Price D, Lubetkin S (2001) Aqueous dispersion of agricultural chemicals. US Patent 20010051175Google Scholar
  150. Sun B, Slomberg DL, Chudasama SL, Lu Y, Schoenfisch MH (2012) Nitric oxide-releasing dendrimers as antibacterial agents. Biomacromolecules 13:3343–3354PubMedPubMedCentralCrossRefGoogle Scholar
  151. Taha RA, Hassan MM, Ibrahim EA, Baker NHA, Shaaban EA (2016) Carbon nanotubes impact on date palm in vitro cultures. Plant Cell Tissue Org Cult (PCTOC) 127:525–534CrossRefGoogle Scholar
  152. Tarafdar J, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12:219–226CrossRefGoogle Scholar
  153. Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289PubMedPubMedCentralCrossRefGoogle Scholar
  154. Tokumasu F, Fairhurst RM, Ostera GR, Brittain NJ, Hwang J, Wellems TE, Dvorak JA (2005) Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots. J Cell Sci 118:1091–1098PubMedCrossRefGoogle Scholar
  155. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48CrossRefGoogle Scholar
  156. Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18:137–147PubMedCrossRefGoogle Scholar
  157. Tungittiplakorn W, Lion LW, Cohen C, Kim J-Y (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610PubMedCrossRefGoogle Scholar
  158. Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39:1354–1358PubMedCrossRefGoogle Scholar
  159. Uddin W, Viji G, Schumann G, Boyd S (2003) Detection of Pyricularia grisea causing gray leaf spot of perennial ryegrass turf by a rapid immuno-recognition assay. Plant Dis 87:772–778PubMedCrossRefGoogle Scholar
  160. Unser S, Bruzas I, He J, Sagle L (2015) Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15:15684–15716PubMedCrossRefGoogle Scholar
  161. Varum K, Ottoy M, Smidsrod O (1994) Water-solubility of partially N-acetylated chitosans as a function of pH: effect of chemical composition and depolymerisation. Carbohydr Polym 25:65CrossRefGoogle Scholar
  162. Velazquez AJ, Carnahan MA, Kristinsson J, Stinnett S, Grinstaff MW, Kim T (2004) New dendritic adhesives for sutureless ophthalmic surgical procedures: in vitro studies of corneal laceration repair. Arch Ophthalmol 122:867–870PubMedCrossRefGoogle Scholar
  163. Venkatesan J, Alam MS, Hong EJ, Kim S-K, Shim MS (2016) Preparation of piperlongumine-loaded chitosan nanoparticles for safe and efficient cancer therapy. RSC Adv 6:79307–79316CrossRefGoogle Scholar
  164. Verissimo TV, Santos NT, Silva JR, Azevedo RB, Gomes AJ, Lunardi CN (2016) In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Mater Sci Eng C 65:199–204CrossRefGoogle Scholar
  165. Veronese FM, Harris JM (2002) Introduction and overview of peptide and protein pegylation. Adv Drug Deliv Rev 54:453–456PubMedCrossRefGoogle Scholar
  166. Vinayaka A, Basheer S, Thakur M (2009) Bioconjugation of CdTe quantum dot for the detection of 2, 4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens Bioelectron 24:1615–1620PubMedCrossRefGoogle Scholar
  167. Wang J, Wang BM, Schwendeman SP (2002) Characterization of the initial burst release of a model peptide from poly (D, L-lactide-co-glycolide) microspheres. J Control Release 82:289–307PubMedCrossRefGoogle Scholar
  168. Wang H, Wang J, Choi D, Tang Z, Wu H, Lin Y (2009) EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosens Bioelectron 24:2377–2383PubMedCrossRefGoogle Scholar
  169. Wang Z, Pan X, He Y, Hu Y, Gu H, Wang Y (2015) Piezoelectric nanowires in energy harvesting applications. Adv Mater Sci Eng 2015:21Google Scholar
  170. Wathier M, Jung PJ, Carnahan MA, Kim T, Grinstaff MW (2004) Dendritic macromers as in situ polymerizing biomaterials for securing cataract incisions. J Am Chem Soc 126:12744–12745PubMedCrossRefGoogle Scholar
  171. Xu L, Tang W-H, Huang C-C, Alexander W, Xiang L-M, Pirollo KF, Rait A, Chang EH (2001) Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol Med 7:723PubMedPubMedCentralCrossRefGoogle Scholar
  172. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC (2010) Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 351:19–29PubMedCrossRefGoogle Scholar
  173. Yang X, Zhang W, Zhao Z, Li N, Mou Z, Sun D, Cai Y, Wang W, Lin Y (2017) Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J. Inorg Biochem 167:36–48CrossRefGoogle Scholar
  174. Yearla SR, Padmasree K (2016) Exploitation of subabul stem lignin as a matrix in controlled release agrochemical nanoformulations: a case study with herbicide diuron. Environmental Science and Pollution Research 23:18085–18098PubMedCrossRefPubMedCentralGoogle Scholar
  175. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7:e47674PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zhang Q, Zhu L, Feng H, Ang S, Chau FS, Liu W-T (2006) Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization. Anal Chim Acta 556:171–177PubMedCrossRefGoogle Scholar
  177. Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci U S A 101:15027–15032PubMedPubMedCentralCrossRefGoogle Scholar
  178. Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Process Impacts 15:260–266PubMedCrossRefGoogle Scholar
  179. Zhao X, Huang Q, Jin Y (2015) Gold nanorod delivery of LSD1 siRNA induces human mesenchymal stem cell differentiation. Mater Sci Eng C 54:142–149CrossRefGoogle Scholar
  180. Zhao T, Liu X, Li Y, Zhang M, He J, Zhang X, Liu H, Wang X, Gu H (2017) Fluorescence and drug loading properties of ZnSe: Mn/ZnS-Paclitaxel/SiO2 nanocapsules templated by F127 micelles. J Colloid Interface Sci 490:436–443PubMedCrossRefGoogle Scholar
  181. Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO and ZnO nanoparticles change the nutritional qualities of cucumber. Journal of Agricultural and Food Chemistry 62:2752–2759PubMedCrossRefGoogle Scholar
  182. Zheng H, Shang Q (2005) Water suspension acetamiprid nanocapsule preparation and its repairing method. Chem Abstr 143:73729Google Scholar
  183. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. Mankamna Kumari
    • 1
  • Nikita Sharma
    • 1
  • Geeta Arya
    • 1
  • Surendra Nimesh
    • 1
  1. 1.Department of Biotechnology, School of Life SciencesCentral University of RajasthanAjmerIndia

Personalised recommendations