Watermelon (Citrullus lanatus) Oil

  • Bushra Sultana
  • Rizwan Ashraf


Watermelon (Citrullus lanatus), member of the Cucurbitaceae family, has been cultivated for thousands of years as a food source for human consumption. Since developing countries alternately depend on non-conventional sources of protein that augment protein deficiency in diets. Watermelon seeds are reported a worthwhile source of protein due to high protein contents as well as important medicinal constituents. The seeds are rich in oil (37.8–45.4%), and protein (25.2–37%) having in precious amino acids. On the commercial scale, the oil is an important industrial raw material as a drying agent in glass paint and soap industry due to its high iodine value and saponification number. The economic importance, nutritional and medical traits of watermelon seed oil has made it curious to know properly. Therefore, this chapter will cover chemical profiling and functionality of watermelon seed oil along with their medicinal applications.


Cucurbitaceae Citrullus colocynthis Carolina cross Yellow Crimson Oilseed cake Fatty acids 


  1. Ahmad, M., Faruk, R., Shagari, K. A., Umar, S. (2017). Analysis of essential oil from watermelon seeds. SosPoly Journal of Science & Agriculture.
  2. Altaş, S., Kizil, G., Kizil, M., Ketani, A., & Haris, P. I. (2011). Protective effect of Diyarbakır watermelon juice on carbon tetrachloride-induced toxicity in rats. Food and Chemical Toxicology, 49, 2433–2438.CrossRefGoogle Scholar
  3. Bang, H., Kim, S., Leskovar, D., & King, S. (2007). Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene β-cyclase (LCYB) gene. Molecular Breeding, 20, 63–72.CrossRefGoogle Scholar
  4. Brat, P., Georgé, S., Bellamy, A., Chaffaut, L. D., Scalbert, A., Mennen, L., Arnault, N., & Amiot, M. J. (2006). Daily polyphenol intake in France from fruit and vegetables. The Journal of Nutrition, 136, 2368–2373.CrossRefGoogle Scholar
  5. Calder, P. C. (2015). Functional roles of fatty acids and their effects on human health. Journal of Parenteral and Enteral Nutrition, 39, 18S–32S.CrossRefGoogle Scholar
  6. Collins, J. K., Wu, G., Perkins-Veazie, P., Spears, K., Claypool, P. L., Baker, R. A., & Clevidence, B. A. (2007). Watermelon consumption increases plasma arginine concentrations in adults. Nutrition, 23, 261–266.CrossRefGoogle Scholar
  7. Das, M., Das, S., & Suthar, S. (2002). Composition of seed and characteristics of oil from karingda [Citrullus lanatus (Thumb) Mansf]. International Journal of Food Science & Technology, 37, 893–896.CrossRefGoogle Scholar
  8. De Conto, L. C., Gragnani, M. A. L., Maus, D., Ambiel, H. C. I., Chiu, M. C., Grimaldi, R., & Gonçalves, L. A. G. (2011). Characterization of crude watermelon seed oil by two different extractions methods. Journal of the American Oil Chemists’ Society, 88, 1709–1714.CrossRefGoogle Scholar
  9. Duke, J. A. & Ayensu, E. S. (1985). Medicinal Plants of China. Reference Publ., Inc. Algonac, Michigan, 2, 705.Google Scholar
  10. Edwards, A. J., Vinyard, B. T., Wiley, E. R., Brown, E. D., Collins, J. K., Perkins-Veazie, P., Baker, R. A., & Clevidence, B. A. (2003). Consumption of watermelon juice increases plasma concentrations of lycopene and β-carotene in humans. The Journal of Nutrition, 133, 1043–1050.CrossRefGoogle Scholar
  11. El-Adawy, T. A., & Taha, K. M. (2001). Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours. Journal of Agricultural and Food Chemistry, 49, 1253–1259.CrossRefGoogle Scholar
  12. Erhirhie, E., & Ekene, N. (2013). Medicinal values on Citrullus lanatus (watermelon): Pharmacological review. International Journal of Research in Pharmaceutical and Biomedical Sciences, 4, 1305–1312.Google Scholar
  13. Essien, E. A., & Eduok, U. M. (2013). Chemical analysis of Citrullus lanatus seed oil obtained from Southern Nigeria. Organic Chemistry, 54, 12700–12703.Google Scholar
  14. Fasina, O., & Colley, Z. (2008). Viscosity and specific heat of vegetable oils as a function of temperature: 35 C to 180 C. International Journal of Food Properties, 11, 738–746.CrossRefGoogle Scholar
  15. Fredes, A., Sales, C., Barreda, M., Valcárcel, M., Roselló, S., & Beltrán, J. (2016). Quantification of prominent volatile compounds responsible for muskmelon and watermelon aroma by purge and trap extraction followed by gas chromatography–mass spectrometry determination. Food Chemistry, 190, 689–700.CrossRefGoogle Scholar
  16. ISO749 (1977). Oilseed residues-Determination of total ash.Google Scholar
  17. ISO5983-1 (1981). Determination of nitrogen content and calculation of crude protein content.Google Scholar
  18. Janakiraman, N., Johnson, M., & Sahaya, S. S. (2012). GC–MS analysis of bioactive constituents of Peristrophe bicalyculata (Retz.) Nees.(Acanthaceae). Asian Pacific Journal of Tropical Biomedicine, 2, S46–S49.CrossRefGoogle Scholar
  19. Jarret, R. L., & Levy, I. J. (2012). Oil and fatty acid contents in the seed of Citrullus lanatus Schrad. Journal of Agricultural and Food Chemistry, 60, 5199–5204.CrossRefGoogle Scholar
  20. Jayaprakasha, G., & Rao, L. J. M. (2011). Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Critical Reviews in Food Science and Nutrition, 51, 547–562.CrossRefGoogle Scholar
  21. Kyriacou, M. C., & Rouphael, Y. (2018). Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae, 234, 463–469.CrossRefGoogle Scholar
  22. Kyriacou, M. C., Leskovar, D. I., Colla, G., & Rouphael, Y. (2018). Watermelon and melon fruit quality: The genotypic and agro-environmental factors implicated. Scientia Horticulturae, 234, 393–408.CrossRefGoogle Scholar
  23. Lila, M. A. (2004). Anthocyanins and human health: An in vitro investigative approach. BioMed Research International, 2004, 306–313.Google Scholar
  24. Ling, K.-S., Harris, K. R., Meyer, J. D., Levi, A., Guner, N., Wehner, T. C., Bendahmane, A., & Havey, M. J. (2009). Non-synonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to Zucchini yellow mosaic virus. Theoretical and Applied Genetics, 120, 191–200.CrossRefGoogle Scholar
  25. Logaraj, T. V. (2011). Watermelon (Citrullus lanatus (Thunb.) Matsumura and Nakai) seed oils and their use in health. In Victor R. Preedy (eds) Nuts and seeds in health and disease prevention. London: Academic Press.CrossRefGoogle Scholar
  26. Mabaleha, M., Mitei, Y., & Yeboah, S. (2007). A comparative study of the properties of selected melon seed oils as potential candidates for development into commercial edible vegetable oils. Journal of the American Oil Chemists’ Society, 84, 31–36.CrossRefGoogle Scholar
  27. Mahla, H., Rathore, S., Venkatesan, K., & Sharma, R. (2018). Analysis of fatty acid methyl esters and oxidative stability of seed purpose watermelon (Citrullus lanatus) genotypes for edible oil. Journal of Food Science and Technology, 55(4), 1552–1561.Google Scholar
  28. Mallek-Ayadi, S., Bahloul, N., & Kechaou, N. (2018). Phytochemical profile, nutraceutical potential and functional properties of Cucumis melo L. seeds. Journal of the Science of Food and Agriculture, 99, 1294–1301.Google Scholar
  29. Mandel, H., Levy, N., Izkovitch, S., & Korman, S. (2005). Elevated plasma citrulline and arginine due to consumption of Citrullus vulgaris (watermelon). Journal of Inherited Metabolic Disease, 28, 467–472.CrossRefGoogle Scholar
  30. Maran, J. P., & Priya, B. (2015). Supercritical fluid extraction of oil from muskmelon (Cucumis melo) seeds. Journal of the Taiwan Institute of Chemical Engineers, 47, 71–78.CrossRefGoogle Scholar
  31. Nehdi, I. (2011). Characteristics, chemical composition and utilisation of Albizia julibrissin seed oil. Industrial Crops and Products, 33, 30–34.CrossRefGoogle Scholar
  32. Oluba, O., Ogunlowo, Y., Ojieh, G., Adebisi, K., Eidangbe, G., & Isiosio, I. (2008). Physicochemical properties and fatty acid composition of Citrullus lanatus (Egusi Melon) seed oil. Journal of Biological Sciences, 8, 814–817.CrossRefGoogle Scholar
  33. Parry, J., Su, L., Moore, J., Cheng, Z., Luther, M., Rao, J. N., Wang, J.-Y., & Yu, L. L. (2006). Chemical compositions, antioxidant capacities, and antiproliferative activities of selected fruit seed flours. Journal of Agricultural and Food Chemistry, 54, 3773–3778.CrossRefGoogle Scholar
  34. Petkova, Z., & Antova, G. (2015). Proximate composition of seeds and seed oils from melon (Cucumis melo L.) cultivated in Bulgaria. Cogent Food & Agriculture, 1, 1018779.CrossRefGoogle Scholar
  35. Rai, A., Mohanty, B., & Bhargava, R. (2018). Optimization of parameters for supercritical extraction of watermelon seed oil. Separation Science and Technology, 53, 671–682.CrossRefGoogle Scholar
  36. Raziq, S., Anwar, F., Mahmood, Z., Shahid, S., & Nadeem, R. (2012). Characterization of seed oils from different varieties of watermelon [Citrullus lanatus (Thunb.)] from Pakistan. Grasas y Aceites, 63, 365–372.CrossRefGoogle Scholar
  37. Sabahelkhier, M., Ishag, K., & Sabir Ali, A. (2011). Fatty acid profile, ash composition and oil characteristics of seeds of watermelon grown in Sudan. British Journal of Science, 1, 76–80.Google Scholar
  38. Saftner, R., Luo, Y., McEvoy, J., Abbott, J. A., & Vinyard, B. (2007). Quality characteristics of fresh-cut watermelon slices from non-treated and 1-methylcyclopropene-and/or ethylene-treated whole fruit. Postharvest Biology and Technology, 44, 71–79.CrossRefGoogle Scholar
  39. Tadmor, Y., King, S., Levi, A., Davis, A., Meir, A., Wasserman, B., Hirschberg, J., & Lewinsohn, E. (2005). Comparative fruit colouration in watermelon and tomato. Food Research International, 38, 837–841.CrossRefGoogle Scholar
  40. Tlili, I., Hdider, C., Lenucci, M. S., Riadh, I., Jebari, H., & Dalessandro, G. (2011). Bioactive compounds and antioxidant activities of different watermelon (Citrullus lanatus (Thunb.) Mansfeld) cultivars as affected by fruit sampling area. Journal of Food Composition and Analysis, 24, 307–314.CrossRefGoogle Scholar
  41. Vohra, A., & Kaur, H. (2011). Chemical investigation of medicinal plant Ajuga bracteosa. Journal of Natural Product Plant Resources, 1, 37–45.Google Scholar
  42. Wang, Y.-Y., Long, X., Zhong, D.-M., Ge, Y.-B., & Wang, Z.-X. (2014). Anti-tyrosinase and antioxidation activities and contents determining from watermelon peel. Food Research and Development, 19, 021.Google Scholar
  43. Wani, A. A., Kaur, D., Ahmed, I., & Sogi, D. (2008). Extraction optimization of watermelon seed protein using response surface methodology. LWT-Food Science and Technology, 41, 1514–1520.CrossRefGoogle Scholar
  44. Wani, A. A., Sogi, D. S., Singh, P., Wani, I. A., & Shivhare, U. S. (2011). Characterisation and functional properties of watermelon (Citrullus lanatus) seed proteins. Journal of the Science of Food and Agriculture, 91, 113–121.CrossRefGoogle Scholar
  45. Yoo, K. S., Bang, H., Lee, E. J., Crosby, K., & Patil, B. S. (2012). Variation of carotenoid, sugar, and ascorbic acid concentrations in watermelon genotypes and genetic analysis. Horticulture, Environment, and Biotechnology, 53, 552–560.CrossRefGoogle Scholar
  46. Ziyada, A., & Elhussien, S. (2008). Physical and chemical characteristics of Citrullus lanatus var. colocynthoide seed oil. Journal of Physical Science, 19, 69–75.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bushra Sultana
    • 1
  • Rizwan Ashraf
    • 1
  1. 1.Department of ChemistryUniversity of Agriculture FaisalabadFaisalabadPakistan

Personalised recommendations