Guava (Psidium guajava) Oil

  • Syed Tufail Hussain Sherazi
  • Sarfaraz Ahmed Mahesar
  • Anam Arain
  • Sirajuddin


The composition and functionality of guava (Psidium guajava) seed oil are reported in this chapter. Guava seed oil was extracted using a Soxhlet apparatus to determine the fatty acid composition of the oil. The oil content of seed on the dry weight basis was 11.1%. The iodine value, acid value, free fatty acid, peroxide value and saponification value were 120.55 g of I2/100 g oil, 3.74 g/100 g oil, 1.86 g/100 g oil, 4.13 meq/kg oil, and 190.74 mg/100 g of oil, respectively. The fatty acid composition was analyzed using Fourier Transform-Infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). The FT-IR spectrum indicates the presence of functional groups related to saturated and unsaturated fatty acids. The results from GC-MS revealed the presence of total 18 fatty acids including 12 saturated and 6 unsaturated fatty acids. The linoleic (60.0%), palmitic (14.8%), oleic (12.5%), stearic (9.08%), and arachidic (1.31%) were the major fatty acids. GC-MS results indicated that guava seed oil is a good source of essential fatty acids. The chemical composition of essential oil was also determined in fruits, seeds and leaves of Psidium guajava by hydrodistillation method using GC-MS. The identified essential oils components are bioactive and have many biological potential applications.


Psidium guajava Guava seed oil FT-IR GC-MS Fatty acid 



Essential oils


Fatty acids


Fatty acid methyl ester


Fourier transform infrared spectroscopy


Gas chromatography


Mono saturated fatty acids


Retention time


Standard deviation


Saturated fatty acids


Unsaturated fatty acids


  1. Adam, F., Vahirua-Lechat, I., Deslandes, E., & Menut, C. (2011). Aromatic plants of French Polynesia. V. Chemical composition of essential oils of leaves of Psidium guajava L. and Psidium cattleyanum Sabine. Journal of Essential Oil Research, 23, 98–101.CrossRefGoogle Scholar
  2. Bağci, E., & Şahin, A. (2004). Fatty acid patterns of the seed oils of some Lathyrus species L. (Papilionideae) from Turkey, a chemotaxonomic approach. Pakistan Journal of Botany, 36(2), 403–413.Google Scholar
  3. Bahi, A., Al Mansouri, S., Al Memari, E., Al Ameri, M., Nurulain, S. M., & Ojha, S. (2014). β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiology & Behavior, 135, 119–124.Google Scholar
  4. Bontempo, P., Doto, A., Miceli, M., Mita, L., Benedetti, R., Nebbioso, A., & Sica, V. (2012). Psidium guajava L. antineoplastic effects: Induction of apoptosis and cell differentiation. Cell Proliferation, 45(1), 22–31.CrossRefGoogle Scholar
  5. Burkill, H. M. (1985). The useful plants of west tropical Africa (Vol. 1: families AD) (2nd ed.). Kew: Royal Botanic Gardens.Google Scholar
  6. Castro-Vargas, H. I., Rodríguez-Varela, L. I., & Parada-Alfonso, F. (2011). Guava (Psidium guajava L.) seed oil obtained with a homemade supercritical fluid extraction system using supercritical CO2 and co-solvent. Journal of Supercritical Fluids, 56(3), 238–242.CrossRefGoogle Scholar
  7. Chalannavar, R. K., Narayanaswamy, V. K., Baijnath, H., & Odhav, B. (2012). Chemical composition of essential oil of Psidium cattleianum var. lucidum (Myrtaceae). African Journal of Biotechnology, 11(33), 8341–8347.Google Scholar
  8. Chandrika, U., Fernando, K., & Ranaweera, K. (2009). Carotenoid content and in vitro bioaccessibility of lycopene from guava (Psidium guajava) and watermelon (Citrullus lanatus) by high-performance liquid chromatography diode array detection. International Journal of Food Sciences and Nutrition, 60(7), 558–566.CrossRefGoogle Scholar
  9. Charles, W., Philip, E., & Carl, W. (2006). Determination of organic acids and sugars in guajava L. cultivars by high-performance liquid chromatography. Food and Agriculture, 33, 777–780.Google Scholar
  10. Chen, Z., He, B., Zhou, J., He, D., Deng, J., & Zeng, R. (2016). Chemical compositions and antibacterial activities of essential oils extracted from Alpinia guilinensis against selected foodborne pathogens. Industrial Crops and Products, 83, 607–613.CrossRefGoogle Scholar
  11. Conway, P. (2001). Tree medicine: a comprehensive guide to the healing power of over 170 trees. London: Judy Piatkus (Publishers) Limited.Google Scholar
  12. Corey, E. J., Mitra, R. B., & Uda, H. (1964). Total synthesis of d, l-Caryophyllene and d, l-Isocaryophyllene. Journal of American Chemical Society, 86, 485–492.CrossRefGoogle Scholar
  13. Dakappa, S. S., Adhikari, R., Timilsina, S. S., & Sajjekhan, S. (2013). A review on the medicinal plant Psidium guajava Linn. (Myrtaceae). Journal of Drug Delivery and Therapeutics, 3(2), 162–168.CrossRefGoogle Scholar
  14. Dhouioui, M., Boulila, A., Chaabane, H., Zina, M. S., & Casabianca, H. (2016). Seasonal changes in essential oil composition of Aristolochia longa L. ssp. paucinervis Batt. (Aristolochiaceae) roots and its antimicrobial activity. Industrial Crops and Products, 83, 301–306.CrossRefGoogle Scholar
  15. Dweck, A. (2001). A review of Psidium guajava. Malayan Journal of Medical Science, 8, 27–30.Google Scholar
  16. El-Ahmady, S. H., Ashour, M. L., & Wink, M. (2013). Chemical composition and anti-inflammatory activity of the essential oils of Psidium guajava fruits and leaves. Journal of Essential Oil Research, 25(6), 475–481.CrossRefGoogle Scholar
  17. Flores, G., Wu, S. B., Negrin, A., & Kennelly, E. J. (2015). Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chemistry, 170, 327–335.CrossRefGoogle Scholar
  18. Fujita, T., Kamei, M., Kanbe, T., Sasaki, K., Yamaguchi, K., & Oshiba, K. (1985). Nutrient contents in fruits and leaves of guava, and in leaves of Japanese Persimmon. Seikatsu Eisei Journal of Urban Health, 29(4), 206–209.Google Scholar
  19. Gutiérrez, R. M. P., Mitchell, S., & Solis, R. V. (2008). Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology, 117(1), 1–27.CrossRefGoogle Scholar
  20. Habib, M. (1986). Studies on the lipid and protein composition of guava seeds (Psidium guajava). Food Chemistry, 22(1), 7–16.CrossRefGoogle Scholar
  21. Heryanto, R., Permana, D., Tedjo, A., Rohaeti, E., Rafi, M., & Darusman, L. K. (2017). A simple photometer and chemometrics analysis for quality control of sambiloto (Andrographis Paniculata) raw material. Indonesian Journal of Pure and Applied Chemistry, 6(3), 238–245.CrossRefGoogle Scholar
  22. Hwang, J., Yen, Y., Chang, M., & Liu, C. (2002). Extraction and identification of volatile components of guava fruits and their attraction to oriental fruit fly, Bactrocera dorsalis (Hendel). Plant Protection Bulletin (Taipei), 44(4), 279–302.Google Scholar
  23. Iwu, M. (1993). Handbook of African medicinal plants, pharmacognostical profile of selected medicinal plants. Boca Raton, Florida: CRC-Press.
  24. Jain, N., Dhawan, K., Malhotra, S., & Singh, R. (2003). Biochemistry of fruit ripening of guava (Psidium guajava L.): Compositional and enzymatic changes. Plant Foods for Human Nutrition, 58(4), 309–315.CrossRefGoogle Scholar
  25. Jordán, M. J., Margaría, C. A., Shaw, P. E., & Goodner, K. L. (2003). Volatile components and aroma active compounds in aqueous essence and fresh pink guava fruit puree (Psidium guajava L.) by GC-MS and multidimensional GC/GC-O. Journal of Agricultural and Food Chemistry, 51(5), 1421–1426.CrossRefGoogle Scholar
  26. Joseph, B., & Priya, M. (2011). Review on nutritional, medicinal and pharmacological properties of guava (Psidium guajava Linn.). International Journal of Pharma and Bio Sciences, 2(1), 53–69.Google Scholar
  27. Katsuyama, S., Mizoguchi, H., Kuwahata, H., Komatsu, T., Nagaoka, K., Nakamura, H., Bagetta, G., Sakurada, T., & Sakurada, S. (2013). Involvement of peripheral cannabinoid and opioid receptors in β-caryophyllene-induced antinociception. European Journal of Pain, 17, 664–675.CrossRefGoogle Scholar
  28. Khadhri, A., El Mokni, R., Almeida, C., Nogueira, J. M. F., & Araújo, M. E. M. (2014). Chemical composition of essential oil of Psidium guajava L. growing in Tunisia. Industrial Crops and Products, 52, 29–31.CrossRefGoogle Scholar
  29. Kumar, A. (2012). Importance for life ‘Psidium guava’InternationalJournal of Research in Pharmaceutical and Biomedical Sciences, 3(1), 137–143.Google Scholar
  30. Legault, J., & Pichette, A. (2007). Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. Journal of Pharmacy and Pharmacology, 59, 1643–1647.Google Scholar
  31. Li, J., Chen, F., & Luo, J. (1999). GC-MS analysis of essential oil from the leaves of Psidium guajava. Zhong Yao Cai= Zhongyaocai= Journal Chinese Medicinal Materials, 22(2), 78–80.Google Scholar
  32. Ogunwande, I. A., Olawore, N. O., Adeleke, K. A., Ekundayo, O., & Koenig, W. A. (2003). Chemical composition of the leaf volatile oil of Psidium guajava L. growing in Nigeria. Flavour and Fragrance Journal, 18, 136–138.CrossRefGoogle Scholar
  33. Medina, M., & Pagano, F. (2003). Caracterización de la pulpa de guayaba (Psidium guajava L.) tipo “Criolla Roja”. Revista de la Facultad de Agronomia Luz, 20(1), 72–86.Google Scholar
  34. Mehmood, A., Jaskani, M. J., Khan, I. A., Ahmad, S., Ahmad, R., Luo, S., & Ahmad, N. M. (2014). Genetic diversity of Pakistani guava (Psidium guajava L.) germplasm and its implications for conservation and breeding. Scientia Horticulturae, 172, 221–232.CrossRefGoogle Scholar
  35. Michael, H., Salib, J., & Ishak, M. (2002). Acylated flavonol glycoside from Psidium gauijava L. seeds. Pharmazie, 57(12), 859–860.PubMedGoogle Scholar
  36. Minzangi, K., Kaaya, A., Kansiime, F., Tabuti, J., Samvura, B., & Grahl-Nielsen, O. (2011). Fatty acid composition of seed oils from selected wild plants of Kahuzi-Biega National Park and surroundings, Democratic Republic of Congo. African Journal of Food Science, 5(4), 219–226.Google Scholar
  37. Mothana, R. A., Al-Said, M. S., Al-Yahya, M. A., Al-Rehaily, A. J., & Khaled, J. M. (2013). GC and GC/MS analysis of essential oil composition of the endemic Soqotraen Leucas virgata Balf. f. and its antimicrobial and antioxidant activities. International Journal of Molecular Sciences, 14(11), 23129–23139.CrossRefGoogle Scholar
  38. Moussa, T. A., & Almaghrabi, O. A. (2016). Fatty acid constituents of Peganum harmala plant using Gas Chromatography–Mass Spectroscopy. Saudi Journal of Biological Sciences, 23(3), 397–403.CrossRefGoogle Scholar
  39. Nadkarni, A. K. (1996). [Indian materia medica]; Dr. KM Nadkarni’s Indian materia medica: With Ayurvedic, Unani-Tibbi, Siddha, allopathic, homeopathic, naturopathic & home remedies, appendices & indexes. 1 (Vol. 1). Mumbai: Popular Prakashan.
  40. Norshazila, S., Syed Zahir, I., Mustapha Suleiman, K., Aisyah, M., & Kamarul Rahim, K. (2010). Antioxidant levels and activities of selected seeds of Malaysian tropical fruits. Malaysian Journal of Nutrition, 16(1), 149–159.PubMedGoogle Scholar
  41. Opute, F. I. (1978). The component fatty acids of Psidium guajava seed fats. Journal of the Science of Food and Agriculture, 29(8), 737–738.CrossRefGoogle Scholar
  42. Paniandy, J. C., Chane-Ming, J., & Pieribattesti, J. C. (2000). Chemical composition of the essential oil and headspace solid-phase microextraction of the guava fruit (Psidium guajava L.). Journal of Essential Oil Research, 12(2), 153–158.CrossRefGoogle Scholar
  43. Pelegrini, P. B., Murad, A. M., Silva, L. P., dos Santos, R. C., Costa, F. T., Tagliari, P. D., & Franco, O. L. (2008). Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides, 29(8), 1271–1279.CrossRefGoogle Scholar
  44. Qin, X. J., Yu, Q., Yan, H., Khan, A., Feng, M. Y., Li, P. P., & Liu, H. Y. (2017). Meroterpenoids with antitumor activities from guava (Psidium guajava). Journal of Agricultural and Food Chemistry, 65(24), 4993–4999.CrossRefGoogle Scholar
  45. Satyal, P., Paudel, P., Lamichhane, B., & Setzer, W. N. (2016). Leaf essential oil composition and bioactivity of Psidium guajava from Kathmandu, Nepal. American Journal of Essential Oils and Natural Products, 3, 11–14.Google Scholar
  46. Shuklaa, S. P., Tiwaria, S., Tiwaria, M., Mohanb, D., & Pandeyc, G. (2017). Removal of fluoride from aqueous solution using Psidium guajava leaves. Desalination and Water Treatment, 62, 418–425.CrossRefGoogle Scholar
  47. Tlili, N., El Guizani, T., Nasri, N., Khaldi, A., & Triki, S. (2011). Protein, lipid, aliphatic and triterpenic alcohol content of caper seeds “Capparis spinosa”. Journal of the American Oil Chemists’ Society, 88(2), 265–270.CrossRefGoogle Scholar
  48. Uchôa-thomaz, A. M. A., Sousa, E. C., Carioca, J. O. B., Morais, S. M. D., Lima, A. D., Martins, C. G., & Rodrigues, S. P. (2014). Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.). Journal of Food Science and Technology, 34(3), 485–492.CrossRefGoogle Scholar
  49. Usman, M., Samad, W. A., Fatima, B., & Shah, M. H. (2013). Pollen parent enhances fruit size and quality in intervarietal crosses in guava (Psidium guajava). International Journal of Agriculture and Biology, 15(1), 125–129. Scholar
  50. Yu, S., Du, S., Yuan, J., & Hu, Y. (2016). Fatty acid profile in the seeds and seed tissues of Paeonia L. species as new oil plant resources. Scientific Reports, 6, 26944.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Syed Tufail Hussain Sherazi
    • 1
  • Sarfaraz Ahmed Mahesar
    • 1
  • Anam Arain
    • 1
  • Sirajuddin
    • 1
  1. 1.National Centre of Excellence in Analytical ChemistryUniversity of SindhJamshoroPakistan

Personalised recommendations