Apricot (Prunus armeniaca L.) Oil

  • Mustafa Kiralan
  • Gülcan Özkan
  • Erdogan Kucukoner
  • M. Mustafa Ozcelik


The apricot (Prunus armeniaca L.) is an important agricultural crop that widely cultıvated in most of the Mediterranean and Central Asian countries. As known, the fruit of apricot has an important place in human nutrition, and can be consumed as fresh or processed. World apricot production is about 2.5 million tonnes. However, apricot kernels are produced as byproducts and often considered a waste product of fruits processing industry. They have potential to be economically-valuable resource, since they are a rich source of dietary protein as well as fiber. In addition, the kernels are considered as potential sources of oils. Apricot kernels have a high oil yield, which is comparable to the commonly used oils of oilseed crops such as soybean, canola and sunflower. Oil from these kernels can be obtained by solvent extraction or cold pressing method. The oil contains a high percentage of unsaturated fatty acids and is a rich source of minor compounds such as sterols, tocochromanols and squalene, hence attracting interest for the utilization in food and pharmaceutical industry. Due to its nutritional chemical composition and functional properties, apricot kernel oil can be used as edible oil and in many applications like food products formulation, cosmetics as well as functional and medicinal supplements. In this chapter, particular attention has also been given to the composition and applications of kernel oil.


Kernel oil Bioactive compounds Functional properties 


  1. Akin, E. B., Karabulut, I., & Topcu, A. (2008). Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chemistry, 107(2), 939–948.CrossRefGoogle Scholar
  2. Alpaslan, M., & Hayta, M. (2006). Apricot kernel: Physical and chemical properties. Journal of the American Oil Chemists’ Society, 83(5), 469–471.CrossRefGoogle Scholar
  3. Aparicio, R., & Apariqcio-Ruiz, R. (2000). Authentication of vegetable oils by chromatographic techniques. Journal of Chromatography, 881, 93–104.PubMedCrossRefGoogle Scholar
  4. Bendini, A., Cerretani, L., Carrasco-Pancorbo, A., Gómez-Caravaca, A. M., Segura-Carretero, A., Fernández-Gutiérrez, A., & Lercker, G. (2007). Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade Alessandra. Molecules, 12, 1679–1719. Scholar
  5. Beyer, R., & Melton, L. D. (1990). Composition of New Zealand apricot kernels. New Zealand Journal of Crop and Horticultural Science, 18(1), 39–42.CrossRefGoogle Scholar
  6. Bhatnagar, A. S., & Gopala Krishna, A. G. (2014). Lipid classes and subclasses of cold-pressed and solvent extracted oils from commercial Indian Niger (Guizotia abyssinica L.f. Cass.) seed. Journal of the American Oil Chemists’ Society, 91(7), 1205–1216.CrossRefGoogle Scholar
  7. Bozan, B., & Temelli, F. (2008). Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Bioresource Technology, 99(14), 6354–6359.PubMedCrossRefGoogle Scholar
  8. Chen, Z. Y., Jiao, R., & Ma, K. Y. (2008). Cholesterol-lowering nutraceuticals and functional foods. Journal of Agricultural and Food Chemistry, 56, 8761–8773.PubMedCrossRefGoogle Scholar
  9. Chevallier, A. (1996). The encyclopedia of medicinal plants. New York: DK Publishing.Google Scholar
  10. Clifford, H. (2001). III. Sources of natural antioxidants: Oilseeds, nuts, cereals, legumes, animal products and microbial sources. In J. Pokorny, N. Yanishlieva, & M. Gordon (Eds.), Antioxidants in food practical applications. Cambridge, UK: Woodhead Publishing Limited.Google Scholar
  11. Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science and Emerging Technologies, 9, 85–91.CrossRefGoogle Scholar
  12. De Jong, N., Plat, J., & Mensink, R. P. (2003). Metabolic effects of plant sterols and stanols. The Journal of Nutritional Biochemistry, 4, 362–369.CrossRefGoogle Scholar
  13. Decker, E. A. (2002). Antioxidant mechanism. In C. C. Akoh & D. B. Min (Eds.), Food lipids: Chemistry, nutrition and biotechnology. New York: Marcel Dekker. 475–492p.Google Scholar
  14. Dolatowski, Z. J., Stadnik, J., & Stasiak, D. (2007). Application of ultrasound in food technology. Acta Scientiarum Polonorum Technologia Alimentaria, 6(3), 89–99.Google Scholar
  15. Egan, H., Ronald, K. S., & Ronald, S. (1981). Pearson’s chemical analysis of foods (8th ed., pp. 507–547). Edinburgh, London, Melbourne and New York: Churchill Livingstone.Google Scholar
  16. El-Adawy, T. A., & Taha, K. M. (2001). Characterization and composition of different seed oils and flours. Food Chemistry, 74, 47–54.CrossRefGoogle Scholar
  17. Esterbauer, H., Dieber-Rotheneder, M., Striegl, G., & Waeg, G. (1991). Role of vitamin E in preventing the oxidation of low-density lipoprotein. The American Journal of Clinical Nutrition, 53, 314–321.CrossRefGoogle Scholar
  18. Farine, M., Soulier, J., & Comes, F. (1986). Etude de la fraction glyceridique des huiles degraines de quelques Rosaceae prunoides. Reviev des Frances Corps Gras, 33(83), 115–117.Google Scholar
  19. Femenia, A., Rossello, C., Mulet, A., & Canellas, J. (1995). Chemical composition of bitter and sweet apricot kernels. Journal of Agricultural and Food Chemistry, 43(2), 356–361.CrossRefGoogle Scholar
  20. Gayas, B., Kaur, G., & Gul, K. (2017). Ultrasound-assisted extraction of apricot kernel oil: Effects on functional and rheological properties. Journal of Food Process Engineering, 40(3), e12439.CrossRefGoogle Scholar
  21. Górnaś, P., Mišina, I., Grāvīte, I., Soliven, A., Kaufmane, E., & Segliņa, D. (2015). Tocochromanols composition in kernels recovered from different apricot varieties: RP-HPLC/FLD and RP-UPLC-ESI/MSn study. Natural Product Research, 29(13), 1222–1227.PubMedCrossRefGoogle Scholar
  22. Górnaś, P., Radziejewska-Kubzdela, E., Mišina, I., Biegańska-Marecik, R., Grygier, A., & Rudzińska, M. (2017). Tocopherols, tocotrienols and carotenoids in kernel oils recovered from 15 apricot (Prunus armeniaca L.) genotypes. Journal of the American Oil Chemists’ Society, 94(5), 693–699.CrossRefGoogle Scholar
  23. Greger, V., & Schieberle, P. (2007). Characterization of the key aroma compounds in apricots (Prunus armeniaca) by application of the molecular sensory science concept. Journal of Agricultural and Food Chemistry, 55(13), 5221–5228.PubMedCrossRefGoogle Scholar
  24. Gurfinger, T., & Letan, A. (1973). Detection of adulteration of almond oil with apricot oil through determination of tocopherols. Journal of Agricultural and Food Chemistry, 21, 1120.CrossRefGoogle Scholar
  25. Hacıseferoğulları, H., Gezer, I., Özcan, M. M., & Murat Asma, B. (2007). Post-harvest chemical and physical-mechanical properties of some apricot varieties cultivated in Turkey. Journal of Food Engineering, 79(1), 364–373.CrossRefGoogle Scholar
  26. Harwood, J. L., & Yaqoob, P. (2002). Nutritional and health aspects of olive oil. European Journal of Lipid Science and Technology, 104, 685–697.CrossRefGoogle Scholar
  27. Hassanein, M. M. (1999). Studies on non-traditional oils: I. Detailed studies on different lipid profiles of some Rosaceae kernel oils. Grasas y Aceites, 50(85), 379–384.CrossRefGoogle Scholar
  28. Hassanien, M. M., Abdel-Razek, A. G., Rudzińska, M., Siger, A., Ratusz, K., & Przybylski, R. (2014). Phytochemical contents and oxidative stability of oils from non-traditional sources. European Journal of Lipid Science and Technology, 116(11), 1563–1571.CrossRefGoogle Scholar
  29. Hensley, K., Benaksas, E. J., Boli, R., Comp, P., Grammas, P., Hamdheydari, L., Mou, S., Pye, Q. N., Stoddard, M. F., Wallis, G., Williamson, K. S., West, M., Wechter, W. J., & Floyd, R. A. (2004). New perspectives on vitamin E: Gamma tocopherol and carboxyethyl hydroxyl chroman metabolites in biology and medicine. Free Radical Biology & Medicine, 36, 1–15.CrossRefGoogle Scholar
  30. Hicks, K. B., & Moreau, R. A. (2001). Phytosterols and phytostanols: Functional food cholesterol busters. Food Technology, 55, 63–67.Google Scholar
  31. Huang, S. W., Frankel, E. N., & German, B. (1994). Antioxidant activity of α- and γ-tocopherols in oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 42, 2108–2114.CrossRefGoogle Scholar
  32. Hummer, K. E., & Janick, J. (2009). Rosaceae: Taxonomy, economic importance, genomics. In Genetics and genomics of Rosaceae (pp. 1–17). New York: Springer.Google Scholar
  33. Kamal-Eldin, A., & Andersson, R. (1997). A multivariate study of the correlation between tocopherol content and fatty acid composition in different vegetable oils. Journal of the American Oil Chemists’ Society, 74, 375–380.CrossRefGoogle Scholar
  34. Kiralan, M., Kayahan, M., Kiralan, S. S., & Ramadan, M. F. (2018). Effect of thermal and photo oxidation on the stability of cold-pressed plum and apricot kernel oils. European Food Research and Technology, 244(1), 31–42.CrossRefGoogle Scholar
  35. Kostadinović Veličkovska, S., Brühl, L., Mitrev, S., Mirhosseini, H., & Matthäus, B. (2015). Quality evaluation of cold-pressed edible oils from Macedonia. European Journal of Lipid Science and Technology, 117(12), 2023–2035.CrossRefGoogle Scholar
  36. Kutlu, T., Durmaz, G., Ateş, B., & Erdoğan, A. (2009). Protective effect of dietary apricot kernel oil supplementation on cholesterol evels and antioxidant status of liver in hypercholesteremic rats. Journal of Food, Agriculture and Environment, 7(3–4), 61–65.Google Scholar
  37. Lewis, W. H., & Elvin-Lewis, M. P. F. (2003). Medicinal botany: Plants affecting human health (p. 214). Hoboken: Wiley.Google Scholar
  38. Lo Bianco, R., Farina, V., Indelicato, S. G., Filizzola, F., & Agozzino, P. (2010). Fruit physical, chemical and aromatic attributes of early, intermediate and late apricot cultivars. Journal of the Science of Food and Agriculture, 90(6), 1008–1019.PubMedGoogle Scholar
  39. Manzoor, M., Anwar, F., Ashraf, M., & Alkharfy, K. M. (2012). Physico-chemical characteristics of seeds oils extracted from different apricot (Prunus armeniaca L.) varieties from Pakistan. Grasas y Aceites, 63, 193–201.CrossRefGoogle Scholar
  40. Matricardi, M., Hesketh, R., & Farrell, S. (2002). Technical Note-20. Supercritical fluid. Newark: Technologies.Google Scholar
  41. Matthaus, B., & Ozcan, M. M. (2009). Fatty acids and tocopherol contents of some Prunus spp. Kernel oil. Journal of Food Lipids, 16, 187–199.CrossRefGoogle Scholar
  42. Mensink, R. P., & Katan, M. B. (1987). Effect of monounsaturated fatty acids versus complex carbohydrates on high-density lipoproteins in healthy men and women. Lancet, 329, 122–125.CrossRefGoogle Scholar
  43. Nikokavouraa, A., Christodouleas, D., Yannakopouloua, E., Papadopoulos, K., & Calokerinos, A. C. (2011). Evaluation of antioxidant activity of hydrophilic and lipophilic compounds in edible oils by a novel fluorimetric method. Talanta, 84, 874–880.CrossRefGoogle Scholar
  44. Orhan, I., Koca, U., Aslan, S., Kartal, M., & Kusmenoglu, S. (2008). Fatty acid analysis of some Turkish apricot seed oils by GC and GC-MS techniques. Turkish Journal of Pharmaceutical Sciences, 5(1), 29–34.Google Scholar
  45. Özkal, S. G., Yener, M. E., & Bayındırlı, L. (2005). Mass transfer modeling of apricot kernel oil extraction with supercritical carbon dioxide. The Journal of Supercritical Fluids, 35(2), 119–127.CrossRefGoogle Scholar
  46. Parry, J., Su, L., Luther, M., Zhou, K., Yurawecz, M. P., Whittaker, P., & Yu, L. (2005). Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. Journal of Agricultural and Food Chemistry, 53, 566–573.CrossRefGoogle Scholar
  47. Patil Sachin, B. S., Wakte, P. S., & Shinde, D. B. (2013). Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design. Journal of Advanced Research, 5, 629–635.CrossRefGoogle Scholar
  48. Prescha, A., Grajzer, M., Dedyk, M., & Grajeta, H. (2014). The antioxidant activity and oxidative stability of cold-pressed oils. Journal of the American Oil Chemists’ Society, 91, 1291–1301.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Quezada, R. S. (2003). U.S. Patent No. 6,582,736. Washington, D.C.: U.S. Patent and Trademark Office.Google Scholar
  50. Ramadan, M. F., & Moersel, J. T. (2006). Screening of the antiradical action of vegetable oils. Journal of Food Composition and Analysis, 19, 838–842.CrossRefGoogle Scholar
  51. Ramadan, M. F., Zayed, R., Abozid, M., & Asker, M. M. S. (2011). Apricot and pumpkin oils reduce plasma cholesterol and triacylglycerol concentrations in rats fed a high-fat diet. Grasas y Aceites, 62(4), 443–452.CrossRefGoogle Scholar
  52. Rosendahl, A., Pyle, D. L., & Niranjan, K. (1996). Aqueous and enzymatic processes for edible oil extraction. Enzyme and Microbial Technology, 19, 402–420.CrossRefGoogle Scholar
  53. Rudzińska, M., Górnaś, P., Raczyk, M., & Soliven, A. (2017). Sterols and squalene in apricot (Prunus armeniaca L.) kernel oils: The variety as a key factor. Natural Product Research, 31(1), 84–88.PubMedCrossRefGoogle Scholar
  54. Sanders, T. H. (2001). Individual oils: Peanut oil. In R. F. Wilson (Ed.), Proceedings of the world conference on oilseed processing and utilization (pp. 141–144). Champaign: American Oil Chemist’s Society Press.Google Scholar
  55. Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds-recent developments. Trends in Food Science and Technology, 12(11), 401–413.CrossRefGoogle Scholar
  56. Shariatifar, N., Pourfard, I. M., Khanıkı, G. J., Nabızadeh, R., Akbarzadeh, A., & Nejad, A. S. M. (2017). Mineral composition, physico-chemical properties and fatty acids profile of Prunus armeniaca apricot seed oil. Asian Journal of Chemistry, 29(9), 2011–2015.CrossRefGoogle Scholar
  57. Sharma, A., & Gupta, M. N. (2006). Ultrasonic pre-irradiation effect upon aqueous enzymatic oil extraction from almond and apricot seeds. Ultrasonics Sonochemistry, 13(6), 529–534.PubMedCrossRefGoogle Scholar
  58. Sies, H., & Murphy, M. E. (1991). Role of tocopherols in the protection of biological systems against oxidative damage. Journal of Photochemistry and Photobiology B: Biology, 8, 211–224.CrossRefGoogle Scholar
  59. Siger, A., Nogala-Kalucka, M., & Lampart-Szczapae, E. (2007). The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. Journal of Lipids, 15, 137–149.CrossRefGoogle Scholar
  60. Slover, H. T., Jr., Thompson, H. R., & Merola, G. V. (1983). Determination of tocopherols and sterols by capillary gas chromatography. Journal of the American Oil Chemists’ Society, 60, 1524–1528.CrossRefGoogle Scholar
  61. Timmermann, F. (1990). Tocopherole – Antioxidative wirkung bei fetten und ölen. Fat Science Technology, 92, 201–206.Google Scholar
  62. Turan, S., Topcu, A., Karabulut, I., Vural, H., & Hayaloglu, A. A. (2007). Fatty acid, triacylglycerol, phytosterol, and tocopherol variations in kernel oil of Malatya apricots from Turkey. Journal of Agricultural and Food Chemistry, 55, 10787–10794.PubMedCrossRefGoogle Scholar
  63. Uluata, S. (2016). Effect of extraction method on biochemical properties and oxidative stability of apricot seed oil. Academic Food Journal, 14(4), 333–340.Google Scholar
  64. Venkatachalam, M., & Sathe, S. K. (2006). Chemical composition of selected edible nut seeds. Journal of Agricultural and Food Chemistry, 54, 4705–4714.CrossRefGoogle Scholar
  65. Waraho, T., McClements, D. J., & Decker, E. A. (2011). Mechanisms of lipid oxidation in food dispersions. Trends in Food Science and Technology, 22(1), 3–13.CrossRefGoogle Scholar
  66. Warleta, F., Campos, M., Allouche, Y., Sánchez-Quesada, C., Ruiz-Mora, J., Beltrán, G., & Gaforio, J. J. (2010). Squalene protects against oxidative DNA damage in MCF10A human mammary epithelial cells but not in MCF7 and MDA-MB-231 human breast cancer cells. Food and Chemical Toxicology, 48(4), 1092–1100.PubMedCrossRefGoogle Scholar
  67. Yıldız, F. (1994). New technologies in apricot processing. Journal of Standard, Apricot Special Issue, Ankara, 67–69.Google Scholar
  68. Zbigniew, J., Dolatowski, J. S., & Dariusz, S. (2007). Application of ultrasound in food technology. Acta Scientrum Polonorum Technologia Alimentaria, 6(3), 89–99.Google Scholar
  69. Zhang, S. B., Lu, Q. Y., Yang, H., & Li Yu Wang, S. (2011). Aqueous enzymatic extraction of oil and protein hydrolysates from roasted peanut seeds. Journal of the American Oil Chemists’ Society, 88, 727–732.CrossRefGoogle Scholar
  70. Zhou, B., Wang, Y., Kang, J., Zhong, H., & Prenzler, P. D. (2016). The quality and volatile-profile changes of Longwangmo apricot (Prunus armeniaca L.) kernel oil prepared by different oil-producing processes. European Journal of Lipid Science and Technology, 118(2), 236–243.CrossRefGoogle Scholar
  71. Zlatanov, M., & Janakieva, I. (1998). Phospholipid composition of some fruit-stone oils of Rosaceae species. European Journal of Lipid Science and Technology, 100(7), 312–315.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mustafa Kiralan
    • 1
  • Gülcan Özkan
    • 2
  • Erdogan Kucukoner
    • 2
  • M. Mustafa Ozcelik
    • 2
  1. 1.Faculty of Engineering, Department of Food EngineeringBalıkesir UniversityBalıkesirTurkey
  2. 2.Faculty of Engineering, Department of Food EngineeringSuleyman Demirel UniversityIspartaTurkey

Personalised recommendations