Crambe abyssinica Hochst. Oil

  • Caroline Mariana de AguiarEmail author
  • Kátia Andressa Santos
  • Sílvio César Sampaio
  • Clayton Antunes Martin


Crambe abyssinica Hochst is an oilseed of the family Brassicaceae, rich in oil with important properties for chemical applications. It is comprised of monounsaturated fatty acids (erucic, palmitoleic, oleic, gadoleic and nervonic acids) and antioxidants like phytosterols, tocopherols, carotenoids and chlorophyll. The oil can be extracted by mechanical pressing or using organic solvents. Some studies have used supercritical carbon dioxide and subcritical propane in oil extraction, resulting in higher yields and lower degradation of minor components. The oxidative stability of vegetable oils has been attributed to the content of minor compounds and the structure of fatty acids. Due to the presence of erucic acid, crambe oil is not suitable for human consumption, but it offers great potential for the production of erucic acid, lubricants, detergents, cosmetics, surfactants, pharmaceuticals, corrosion inhibitor, polyethylene films, behenic acid, coatings, nylons, refrigerant fluid, photographic materials, and insulation fluid. In addition, this oil presents great competitiveness and advantages over other vegetable oils in the biodiesel production. Refined oils can be used in fish feed. Cake and meal can be used as protein supplements in ruminant feed, in the removal of metallic ions and pollutants in bioremediation. Therefore, knowledge and studies on the composition of inedible vegetable oils, such as crambe oil, is particularly important for stability and conservation, considering the numerous uses of this oil.


Crambe abyssinica Fatty acids composition Antioxidants Supercritical extraction Phenolic compounds Carotenoids Chlorophyll 


  1. Aguiar, C. M. (2016). Efeito da adubação fosfatada sobre características agronômicas e qualidade do óleo da cultura de crambe. Dissertation. Universidade estadual do oeste do paraná.Google Scholar
  2. Aguiar, C. M., Sampaio, S. C., Santos, K. A., Silva, E. A., Piana, P. A., Richart, A., & Reis, R. R. (2017). Total fatty acid content, antioxidant composition, antioxidant activity, and content of oil from crambe seeds cultivated with phosphorus. European Journal of Lipid Science and Technology, 119(10). Scholar
  3. Aladic, K., Jarni, K., Barbir, T., Vidovic, S., Vladic, J., Bilic, M., & Jokic, S. (2015). Supercritical CO2 extraction of hemp (Cannabis sativa L.) seed oil. Industrial Crops and Products, 76, 472–478.CrossRefGoogle Scholar
  4. Angelo, P. M., & Jorge, N. (2007). Compostos fenólicos em alimentos – Uma breve revisão. Revista do Instituto Adolfo Lutz, 66, 1–9.Google Scholar
  5. Atabani, A. E., Silitongaa, A. S., Onga, H. C., Mahliac, T. M. I., Masjukia, H. H., Badruddina, I. A., & Fayaza, H. (2013). Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews, 18, 211–245.CrossRefGoogle Scholar
  6. Bassegio, D., Zanotto, M. D., Santos, R. F., Werncke, I., Dias, P. P., & Olivo, M. (2016). Oilseed crop crambe as a source of renewable energy in Brazil. Renewable and Sustainable Energy Reviews, 66, 311–321.CrossRefGoogle Scholar
  7. Beveridge, T. H. J., Li, T. S. C., & Drover, J. C. G. (2002). Phytosterol content in American ginseng seed oil. Journal of Agricultural and Food Chemistry, 50, 744–750.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bianchi, L. M., Duncan, S. E., Webster, J. B., Neilson, A. P., & O’Keefe, S. F. (2015). Contribution of chlorophyll to photooxidation of soybean oil at specific visible wavelengths of light. Journal of Food Science, 80, 252–261.CrossRefGoogle Scholar
  9. Bondioli, P., Folegatti, L., Lazzeri, L., & Palmieri, S. (1998). Native Crambe abyssinica oil and its derivatives as renewable lubricants: An approach to improve its quality by chemical and biotechnological processes. Industrial Crops and Products, 7, 231–238.CrossRefGoogle Scholar
  10. Boss, E. A. (2000). Analise do desempenho de plantas de extração de óleo convencionais e de processos supercríticos. Dissertation. Universidade Estadual de Campinas. Faculdade de Engenharia Quimica. 105p.Google Scholar
  11. Boutin, O., & Badens, E. (2009). Extraction from oleaginous seeds using supercritical CO2: Experimental design and products quality. Journal of Food Engineering, 92, 396–402.CrossRefGoogle Scholar
  12. British Standard EN 14214. (2008). Automotive fuels – fatty acid methyl esters (FAME) for diesel engines – requirements and test methods.Google Scholar
  13. Carlson, K. D., Gardner, J. C., Anderson, V. L., & Hanzel, J. J. (1996). Crambe: New crop success. In J. Janick (Ed.), Progress in new crops (pp. 306–322). Alexandria: ASHS Press.Google Scholar
  14. Carlsson, A. S. (2009). Plant oils as feedstock alternatives to petroleum – a short survey of potential oil crop platforms. Biochimie, 91, 665–670.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Castleman, G., Pymer, S., & Greenwood, C. (1999). Potential for crambe (C. abyssinica) in Mallee/Wimmera of Australia. In 10th international rapessed congress.Google Scholar
  16. Cert, A., Moreda, W., & Pérez-Camino, M. C. (2000). Chromatographic analysis of minor constituents in vegetable oils. Journal of Chromatography. A, 881, 131–148.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Colodetti, T. V., Martins, L. D., Rodrigues, W. M., Brinate, S. V. B., & Tomaz, M. A. (2012). Crambe: aspectos gerais da produção agrícola. Enciclopédia Biosfera, 8(14), 258–269.Google Scholar
  18. Corso, M. P. (2008). Estudo da extração de óleo de sementes de gergelim (Sesamun indicum L.) empregando os solventes dióxido de carbono supercrítico e n-propano pressurizado. Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Química da Universidade Estadual do Oeste do Paraná.Google Scholar
  19. Corso, M. P., Fagundes-Klen, M. R., Silva, E. A., Cardozo Filho, L., Santos, J. N., Freitas, L. S., & Dariva, C. (2010). Extraction of sesame seed (Sesamun indicum L.) oil using compressed propane and supercritical carbon dioxide. Journal of Supercritical Fluids, 52, 56–61.CrossRefGoogle Scholar
  20. Costa, E., Almeida, M. F., Ferraz, M. C. A., & Dias, J. M. (2018). Effect of Crambe abyssinica oil degumming in phosphorus concentration of refined oil and derived biodiesel. Renewable Energy, 124, 27–33. Scholar
  21. Cremonez, P. A., Feroldi, M., Nadaleti, W. C., Rossi, E., Feiden, A., Camargo, M. P., Cremonez, F. E., & Klajnb, F. F. (2015). Biodiesel production in Brazil: Current scenario and perspectives. Renewable and Sustainable Energy Reviews, 42, 415–428.CrossRefGoogle Scholar
  22. Da Porto, C., Decorti, D., & Tubaro, F. (2012). Fatty acid composition and oxidation stability of hemp (Cannabis sativa L.) seed oil extracted by supercritical carbon dioxide. Industrial Crops and Products, 36, 401–404.CrossRefGoogle Scholar
  23. Danlami, J. M., Zaini, M. M. A. A., Arsad, A., & Yunus, M. A. C. (2015). Solubility assessment of castor (Ricinus communis L) oil in supercritical CO2 at different temperatures and pressures under dynamic conditions. Industrial Crops and Products, 76, 34–40.CrossRefGoogle Scholar
  24. Desai, B. B. (2004). Seeds handbook: Biology, production processing and storage (2nd ed., p. 787). New York: Marcel Dekker.CrossRefGoogle Scholar
  25. Dimitrios, B. (2006). Sources of natural phenolics antioxidants. Trends in Food Science and Technology, 17, 505–512.CrossRefGoogle Scholar
  26. Falasca, S. L., Flores, N., Lamas, M. C., Carballo, S. M., & Anschau, A. (2010). Crambe abyssinica: An almost unknown crop with a promissory future to produce biodiesel in Argentina. International Journal of Hydrogen Energy, 35, 5808–5812.CrossRefGoogle Scholar
  27. Favaro, S. P., Roscoe, R., Dalmontes, A. M. A., Mendonça, B. P. C., & Souza, A. D. V. (2010). Produtos e Co-produtos. In FUNDAÇÃO MS. Tecnologia e produção: crambe 2010 (pp. 48–59). Maracaju: Fundação MS.Google Scholar
  28. Feng, N., Guoa, X., Lianga, S., Zhub, Y., & Liub, J. (2011). Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of Hazardous Materials, 185, 49–54.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Freitas, L. S. (2007). Desenvolvimento de procedimentos de extração de óleo de semente de uva e caracterização química dos compostos extraídos. Universidade Federal do Rio Grande do Sul 227 p. Thesis.Google Scholar
  30. Freitas, L. S., Jacques, R. A., Richter, M. F., Silva, A. L., & Caramão, E. B. (2008). Pressurized liquid extraction of vitamin E from Brazilian grape seed oil. Journal of Chromatography A, 1200, 80–83.CrossRefGoogle Scholar
  31. Gomes, Jr. S. B. (2010). Technical and economic evaluation of vegetable oil application crambe as an electrical insulator compared with soybean oil. Dissertation. UTFPR.Google Scholar
  32. Gonçalves, A. C., Jr. (2013). Decontamination and monitoring water and soil in the Amazon region using alternative adsorbent materials, aimed at removing toxic heavy metals and pesticides. Incorporated Society, 6, 105–113.Google Scholar
  33. Gonçalves, A. C., Jr., Rubio, F., Meneghel, A. P., Coelho, G. F., Dragunski, D. C., & Strey, L. (2013). Use Crambe abyssinica seeds how adsorbent in removing metals. Water Revista Brasileira de Engenharia Agrícola e Ambiental, 17, 306–311.CrossRefGoogle Scholar
  34. Goswami, D., Basu, J. K., & De, S. (2012). Optimal hydrolysis of mustard oil to erucic acid: A biocatalytic approach. Chemical Engineering Journal, 182, 542–548.CrossRefGoogle Scholar
  35. Guinazi, M., Milagres, R. C. R. M., Pinheiro-Sant’Ana, H. M., & Chaves, J. B. P. (2009). Tocoferois e Tocotrienois em óleos vegetais e ovos. Quim Nova, 32, 2098–2103.CrossRefGoogle Scholar
  36. Gurr, M. I., Blades, J., Appleby, R. S., Smith, C. G., Robinson, M. P., & Nichols, B. W. (1974). Studies on seed-oil triglycerides triglyceride biosynthesis and storage in whole seeds and oil bodies of Crambe abyssinica. European Journal of Biochemistry, 43, 281–290.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Heldt, H. W. (2005). Plant biochemistry (3rd ed.). London: Elsevier Academic Press.Google Scholar
  38. Herculano, B. N. (2013). Bran crambe in feeding dairy. Dissertation. UFVJM.Google Scholar
  39. Jachmanián, I., Margenat, L., Torres, A., & Grompone, M. (2006). Estabilidad oxidativa y contenido de tocoferoles en el aceite de canola extraído con CO2 supercrítico. Grasas y Aceites, 2, 155–159.Google Scholar
  40. Jasper, S. P. (2009). Cultura do crambe (Crambe abyssinica Hochst): avaliação energética, de custo de produção e produtividade em sistema de plantio direto. Universidade Estadual Paulista, 103 p. Thesis.Google Scholar
  41. Jasper, S. P., Biaggioni, M. A. M., & Silva, P. R. A. (2010). Comparison of crambe production cost (Crambe abyssinica hochst) with other oilseed crops in no–till system. Energy and Agriculture, 25, 141–153.CrossRefGoogle Scholar
  42. Jasper, S. P., Biaggioni, M. A. M., & Silva, P. R. A. (2013). Caracterização físico-química do óleo e do biodiesel de Crambe abyssinica Hochst. Nucleus, 10, 183–190.CrossRefGoogle Scholar
  43. Kim, H., Lee, S., Park, K., & Hong, I. (1999). Characterization of extraction and separation of rice bran oil rich in EFA using SFE process. Separation and Purification Technology, 15(1), 1–8. Scholar
  44. Kmiecik, D., Korczak, J., Rudzinska, M., Michałowska, A. G., & Hes, M. (2009). Stabilization of phytosterols in rapeseed oil by natural antioxidants during heating. European Journal of Lipid Science and Technology, 111, 1124–1132.CrossRefGoogle Scholar
  45. Knights, E. G. (2002). Crambe: A North Dakota case study (p. 25). A report for the rural industries research and development corporation, RIRDC Publication n. W02/005.Google Scholar
  46. Knothe, G., & Dunn, R. O. (2001). Biofuels derivated from vegetable oils and fats. In Oleochemical manufacture and applications (pp. 106–163). Liverpool: Sheffield Academic.Google Scholar
  47. Kodali, D. R. (2002). High performance ester lubricants from natural oils. Industrial Lubrication and Tribology, 54, 165–170.CrossRefGoogle Scholar
  48. Lalas, S., Gortzi, O., Athanasiadis, V., & Dourtoglou, V. (2012). Full characterization of Crambe abyssinica Hochst. Seed Oil and Journal of the American Oil Chemists, 89, 2253–2258.CrossRefGoogle Scholar
  49. Lazzeri, L., Leoni, O., Conte, L., & Palmieri, S. (1994). Some technological characteristics and potential uses of Crambe abyssinica products. Industrial Crops and Products, 3, 103–112.CrossRefGoogle Scholar
  50. Lechner, M., Reiter, B., & Lorbeer, E. (1999). Determination of free and esterified sterols in potential new oil seed crops by coupled on-line liquid chromatography-gas-chromatography. European Journal of Lipid Science and Technology, 101, 171–177.Google Scholar
  51. Leonard, C. (1994). Sources and commercial applications of high erucic vegetable oils. Lipid Technology, 4, 79–83.Google Scholar
  52. Li, T. S. C., Beveridge, T. H. J., & Drover, J. C. G. (2007). Phytosterol content of sea buckthorn (Hippophae rhamnoides L.) seed oil: Extraction and identification. Food Chemistry, 101, 1633–1639.CrossRefGoogle Scholar
  53. Litwinienko, G., & Kasprzycka-Guttman, T. (1998). A DSC study on thermoxidation kinetics of mustard oil. Thermochimica Acta, 319, 185–191.CrossRefGoogle Scholar
  54. Litwinienko, G., Kasprzycka-Guttman, T., & Studzinski, M. (1997). Effects of selected phenol derivatives on the autoxidation of linolenic acid investigated by DSC non-isothermal. Thermochimica Acta, 307(1), 97–106.CrossRefGoogle Scholar
  55. Lobo, I. P., Ferreira, S. L. C., & da Cruz, R. S. (2009). Biodiesel: Parâmetros de Qualidade e Métodos Analíticos. Quim Nova, 32, 1596–1608.CrossRefGoogle Scholar
  56. Maciel, A. M., Ming, C. C., Ribeiro, A. P. B., Silva, R. C., Gioielli, L. A., & Gonçalves, L. A. G. (2014). Physicochemical properties of interesterified blends of fully hydrogenated Crambe abyssinica oil and soybean oil. Journal of the American Oil Chemists’ Society, 91, 111–123.CrossRefGoogle Scholar
  57. Malecka, M. (2002). Antioxidant properties of theunsaponifiable matter isolated from tomato seeds, oat grains and wheat rem oil. Food Chemistry, 79, 327–330.CrossRefGoogle Scholar
  58. Mello, B. T. F., Gonçalves, J. E., Rodrigues, G. M., Cardozo-Filho, L., & Silva, C. (2017). Hydroesterification of crambe oil (Crambe abyssinica H.) under pressurized conditions. Industrial Crops and Products, 97, 110–119.CrossRefGoogle Scholar
  59. Mendonça, B. P. (2012). Co product crambe in cattle feed. PhD thesis Viçosa Univ.Google Scholar
  60. Merrill, L. I., Pike, O. A., Ogden, L. V., & Dunn, M. L. (2008). Oxidative stability of conventional and high-oleic vegetable oils with added antioxidants. Journal of the American Oil Chemists, 85, 771–776.CrossRefGoogle Scholar
  61. Micic, D. M., Ostojic, S. B., Simonovic, M. B., Krstic, G., Pezo, L. L., & Simonovic, B. R. (2015). Kinetics of blackberry and raspberry seed oils oxidation by DSC. Thermochimica Acta, 601, 39–44.CrossRefGoogle Scholar
  62. Moslavac, T., Jokic, S., Subaric, D., Aladic, K., Vukoja, J., & Prce, N. (2014). Pressing and supercritical CO2 extraction of Camelina sativa oil. Industrial Crops and Products, 54, 122–129.CrossRefGoogle Scholar
  63. Mulder, J. H., & Mastebroek, H. D. (1996). Variation for agronomic characteristics in Crambe hispanica, a wild relative of Crambe abyssinica. Euphytica, 89, 267–278.CrossRefGoogle Scholar
  64. Nimet, G., Silva, E. A., Palú, F., Dariva, C., Freitas, L. S., Neto, A. M., & Cardozo Filho, L. (2011). Extraction of sunflower (Heliantus annuus L.) oil with supercritical CO2 and subcritical propane: Experimental and modeling. Chemical Engineering Journal, 168, 262–268.CrossRefGoogle Scholar
  65. No, D. S., Zhao, T., Kim, B. H., Choi, H. D., & Kim, I. H. (2013). Enrichment of erucic acid from crambe oil in a recirculated packed bed reactor via lipase-catalyzed ethanolysis. Journal of Molecular Catalysis Enzymatic, 87, 6–10.CrossRefGoogle Scholar
  66. Oliveira, R. C., Viecelli, C. A., Primieri, C., Barth, E. F., Bleil Junior, H. G., & Sanderson, K. (2013). Crop crambe. Assoeste, 70.Google Scholar
  67. Onorevoli, B. (2012). Estudo do Crambe abyssinica como fonte de matérias primas oleaginosas: óleo vegetal, ésteres metílicos e bio-óleo. Dissertation. Instituto de Química – Programa de Pós-Graduação em Ciência dos Materiais. Universidade Federal do Rio Grande do Sul.Google Scholar
  68. Onorevoli, B., Machado, M. E., Dariva, C., Franceschi, E., Krause, L. C., Jacques, R. A., & Caramão, E. B. (2014). A one-dimensional and comprehensive two-dimensional gas chromatography study of the oil and the bio-oil of the residual cakes from the seeds of Crambe abyssinica. Industrial Crops and Products, 52, 8–16.CrossRefGoogle Scholar
  69. Onyilagha, J., Bala, A., & Hallett, R. (2003). Leaf flavonoids of the cruciferous species, Camelina sativa, Crambe spp., Thlaspi arvense and several other genera of the family Brassicaceae. Biochemical Systematics and Ecology, 31, 1309–1322.CrossRefGoogle Scholar
  70. Osawa, C. C., Gonçalves, L. A. G., & Ragazzi, S. (2006). Titulação potenciométrica aplicada na determinação de ácidos graxos livres de óleos e gorduras comestíveis. Quim Nova, 29, 593–599.CrossRefGoogle Scholar
  71. Pederssetti, M. M. (2008). Analysis of the effect of the temperature and pressure in the supercritical extraction of the canola essential oil with supercritical carbon dioxide and pressurized n-propano. Dissertation. Universidade Estadual do Oeste do Paraná.Google Scholar
  72. Pitol, C., Broch, D. L., & Roscoe, R. (2010). Tecnologia e produção: crambe. Maracaju: Fundacão MS.Google Scholar
  73. Plein, G. S., Favaro, S. P., Souza, A. D. V., Souza, C. F. T., Santos, G. P., Miyahia, M. A. M., & Roscoe, R. (2010). Caracterização da fração lipídica em sementes de crambe armazenadas com e sem casca. In IV Congresso brasileiro de mamona e I simpósio internacional de oleaginosas energéticas (Vol. 1, pp. 1812–1816).Google Scholar
  74. Prina, A. O., & Martinez-laborde, J. B. (2008). A taxonomic revision of Crambe section Dendocrambe (Brassicaceae). Botanical Journal of the Linnean, 156, 291–304.CrossRefGoogle Scholar
  75. Przybylski, R., Lee, Y., & Kim, I. (1998). Oxidative stability of canola oils extracted with supercritical carbon dioxide. Lebensmittel Wissenschaft und Technologie, 31, 687–693.CrossRefGoogle Scholar
  76. Przygoda, K., & Wejnerowska, G. (2015). Extraction of tocopherol-enriched oils from Quinoa seeds by supercritical fluid extraction. Industrial Crops and Products, 63, 41–47.CrossRefGoogle Scholar
  77. Ramalho, V. C., & Jorge, N. (2006). Antioxidantes utilizados em óleos, gorduras e alimentos gordurosos. Quim Nova, 29, 755–760.CrossRefGoogle Scholar
  78. Rittner, H. (2002). Tecnologia das matérias graxas: vol. 2 – purificação e refinação. Impressão autorizada. 367 p.Google Scholar
  79. Robey, W., & Shermer, W. (1994). The damaging effects of oxidation. Feed Mix, 2, 22–26.Google Scholar
  80. Rodriguez-Amaya, D. B., Kimura, M., Godoy, H. T., & Amaya-Farfan, J. (2008). Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. Journal of Food Composition and Analysis, 21, 445–463.CrossRefGoogle Scholar
  81. Rubio, F., Gonçalves Junior, A. C., Meneghel, A. P., Tarley, C. R., Schwantes, D., & Coelho, G. F. (2013a). Removal of cadmium from water using by–product Crambe abyssinica Hochst seeds as biosorbent material. Water Science and Technology, 68, 227–233.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Rubio, F., Gonçalves Junior, A. C., Dragunski, D. C., Tarleyc, C. R. T., Meneghel, A. P., & Schwantes, D. (2013b). A Crambe abyssinica seed by–product as biosorbent for lead (II) removal from. Desalination and Water Treatment, 51, 1–10.CrossRefGoogle Scholar
  83. Ruttarattanamongkol, K., Siebenhandl-Ehn, S., Schreiner, M., & Petrasch, A. M. (2014). Pilot-scale supercritical carbon dioxide extraction, physico-chemical properties and profile characterization of Moringa oleifera seed oil in comparison with conventional extraction methods. Industrial Crops and Products, 58, 68–77.CrossRefGoogle Scholar
  84. Ryan, E., Galvin, K., O’Connor, T. P., Maguire, A. R., & O’Brien, N. M. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods for Human Nutrition, 62, 85–91.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Sahena, F., Zaidul, I. S. M., Jinap, S., Karim, A. A., Abbas, K. A., Norulaini, N. A. N., & Omar, A. K. M. (2009). Application of supercritical CO2 in lipid extraction – a review. Journal of Food Engineering, 95, 240–253.CrossRefGoogle Scholar
  86. Santos, K. A. (2014). Extraction of crambe (Crambe abyssinica) seed oil using propane subcritical: Characterization of oil and bran. Dissertation. Universidade Estadual do Oeste do Parana.Google Scholar
  87. Santos, K. A., Bariccatti, R. A., Cardozo-Filho, L., Schneider, R., Palú, F., Silva, C., & Silva, E. A. (2015). Extraction of crambe seed oil using subcritical propane: Kinetics, characterization and modeling. Journal of Supercritical Fluids, 104, 54–61.CrossRefGoogle Scholar
  88. Shao, P., Liu, Q., Fang, Z., & Sun, P. (2015). Chemical composition, thermal stability and antioxidante properties of tea seed oils obtained by different extraction methods: Supercritical fluid extraction yields the best oil quality. European Journal of Lipid Science and Technology, 117, 355–365.CrossRefGoogle Scholar
  89. Shashidhara, Y. M., & Jayaram, S. R. (2010). Vegetable oils as a potential cutting fluid – an evolution. Tribology International, 43, 1073–1081.CrossRefGoogle Scholar
  90. Silva, F. A. M., Borges, M. F. M., & Ferreira, M. A. (1999). Métodos para avaliação do grau de oxidação lipídica e da capacidade antioxidante. Quim Nova, 22, 94–103.CrossRefGoogle Scholar
  91. Silva, M. L. C., Costa, R. S., Santana, A. S., & Koblitz, M. G. B. (2010). Compostos fenólicos, carotenóides e atividade antioxidante em produtos vegetais. Semina: Ciências Agrárias, 31, 669–682.Google Scholar
  92. Solati, Z., Baharin, B. S., & Bagheri, H. (2012). Supercritical carbon dioxide (SC-CO2) extraction of Nigella sativa L. oil using full factorial design. Industrial Crops and Products, 36, 519–523.CrossRefGoogle Scholar
  93. Streit, N. M., Canterle, L. P., Canto, M. W., & Hecktheuer, L. H. H. (2005). As Clorofilas. Ciência Rural, 35, 748–755.CrossRefGoogle Scholar
  94. Szydłowska-Czerniak, A., Dianoczki, C., Recseg, K., Karlovits, G., & Szłyka, E. (2008). Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta, 76, 899–905.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Tavares, G. R., Gonçalves, J. E., Santos, W. D., & Silva, C. (2017). Enzymatic interesterification of crambe oil assisted by ultrasound. Industrial Crops and Products, 97, 218–223.CrossRefGoogle Scholar
  96. Temple-Heald, C. (2004). Rapeseed and canola oil: Productions, processing, properties and uses (pp. 111–130). Oxford: Blackwell Publishing.Google Scholar
  97. Tsaknis, J., & Lalas, S. (2002). Stability during frying of Moringa oleifera seed oil variety “Periyakulam 1”. Journal of Food Composition and Analysis, 15, 79–101.CrossRefGoogle Scholar
  98. Tsaknis, J., Lalas, S., Gergis, V., Dourtoglou, V., & Spiliotis, V. (1999). Characterization of Moringa oleifera variety Mbololo seed oil of Kenya. Journal of Agricultural and Food Chemistry, 47, 4495–4499.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Tuberoso, C. I. G., Kowalczyk, A., Sarritzu, E., & Cabras, P. (2007). Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chemistry, 103, 1494–1501.CrossRefGoogle Scholar
  100. Tutus, A., Comlekcioglu, N., Karaman, S., & Alma, M. H. (2010). Chemical composition and fiber properties of Crambe orientalis and Crambe tataria. International Journal of Agriculture and Biology, 12, 286–290.Google Scholar
  101. Uenojo, M., Maróstica Junior, M. R., & Pastore, G. M. (2007). Carotenóides: propriedades, aplicações e biotransformação para formação de compostos de aroma. Quim Nova, 30, 616–622.CrossRefGoogle Scholar
  102. Uquiche, E., Romero, V., Ortíz, J., & Del Valle, J. M. (2012). Extraction of oil and minor lipids from cold-press rapeseed cake with supercritical CO2. Brazilian Journal of Chemical Engineering, 29, 585–597.CrossRefGoogle Scholar
  103. Wang, Y. P., Tang, J. S., & Chu, C. Q. (2000). A preliminary study on the introduction and cultivation of Crambe abyssinica in China, an oil plant for industrial uses. Industrial Crops and Products, 12, 47–52.CrossRefGoogle Scholar
  104. Warwick, S. I., Francis, A., & Al-Shehbaz, I. A. (2006). Brassicaceae: Species checklist and database on CD-Rom. Plant Systematics and Evolution, 259, 249–258.CrossRefGoogle Scholar
  105. Wazilewski, W. T., Bariccatti, R. A., Martins, G. I., Secco, D., Souza, S. M. N., Rosa, H. A., & Chaves, L. I. (2013). Study of the methyl crambe (Crambe abyssinica Hochst) and soybean biodiesel oxidative stability. Industrial Crops and Products, 43, 207–212.CrossRefGoogle Scholar
  106. Winkler, J. K., & Warner, K. (2008). The effect of phytosterol concentration on oxidative stability and thermal polymerization of heated oils. European Journal of Lipid Science and Technology, 110, 455–464.CrossRefGoogle Scholar
  107. Wu, H., Shi, J., Xuea, S., Kakuda, Y., Wanga, D., Jiang, Y., Yee, X., Lif, Y., & Subramanian, J. (2011). Essential oil extracted from peach (Prunus persica) kernel and its physicochemical and antioxidant properties. Food Science and Technology, 44, 2032–2039.Google Scholar
  108. Yang, M., Zheng, C., Zhou, Q., Huang, F., Liu, C., & Wang, H. (2013). Minor components and oxidative stability of cold-pressed oil from rapeseed cultivars in China. Journal of Food Composition and Analysis, 29, 1–9.CrossRefGoogle Scholar
  109. Zanetti, F., Vameralib, T., & Mosca, G. (2009). Yield and oil variability in modern varieties of high-erucic winter oilseed rape (Brassica napus L. var. oleifera) and Ethiopian mustard (Brassica carinata A. Braun) under reduced agricultural inputs. Industrial Crops and Products, 30, 265–270.CrossRefGoogle Scholar
  110. Zhu, L. H., Krens, F., Smith, M. A., Li, X., Qi, W., Van Loo, E. N., Iven, T., Feussner, I., Nazarenus, T. J., Huai, D., Taylor, D. C., Zhou, X. R., Green, A. G., Shockey, J., Klasson, K. T., Mullen, R. T., Huang, B., Dyer, J. M., & Cahoon, E. B. (2016). Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production. Scientific Reports, 6, 22181.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Caroline Mariana de Aguiar
    • 1
    Email author
  • Kátia Andressa Santos
    • 2
  • Sílvio César Sampaio
    • 3
  • Clayton Antunes Martin
    • 1
  1. 1.Federal Technological University of ParanaToledoBrazil
  2. 2.State University of Western ParanáToledoBrazil
  3. 3.State University of Western ParanáCascavelBrazil

Personalised recommendations