Advertisement

Vaccinium Genus Berry Waxes and Oils

  • M. KlavinsEmail author
  • L. Klavina
Chapter

Abstract

Vaccinium is a common and widespread genus of about 450 species of shrubs or dwarf shrubs in the heath family (Ericaceae). Most of Vaccinium species produce edible berries and many berries are widely cultivated at an industrial scale, for example, bilberries (Vaccinium myrtillus L.), highbush blueberries (Vaccinium corymbosum L.), lingonberries (Vaccinium vitis-idaea L.), and cranberries (Vaccinium oxycoccos L.). These berries are important articles in the markets of berries in Northern countries both raw, and processed. Vaccinium berries are at first valued considering high vitamin concentrations as well as high concentrations of phenolics. However, also oils and waxes (lipids) of Vaccinium berries have high diversity in respect to their composition as well as the high potential of their applications. Vaccinium berry oils and waxes can be obtained and produced from berry press residues-berry juice processing wastes. From Vaccinium berry seeds oils, a high amounts of triglycerides as well as fatty acids, alkanes, alkanols, terpenoids and other lipids can be isolated. Several sterols also can be found in Vaccinium berry oils. From the perspective of practical applications, following groups of substances are of interest: sterols, terpenoids, and polyunsaturated fatty acids.

Keywords

Ericaceae Vaccinium corymbosum Vaccinium myrtillus Vaccinium corymbosum Vaccinium vitis-idaea Vaccinium oxycoccos 

Notes

Acknowledgments

The study was supported by the European Regional Development Fund within the project No. 1.1.1.1/16/A/047 “Genus Vaccinium berry processing using green technologies and innovative, pharmacologically characterized biopharmaceutical products”.

References

  1. Baker, E. A. (1982). Chemistry and morphology of plant epicuticular waxes. In D. F. Cutler, K. L. Alvin, & C. E. Price (Eds.), The plant cuticle (pp. 139–166). London: Academic.Google Scholar
  2. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.CrossRefGoogle Scholar
  3. Croteau, R., & Fagerson, S. (1969). Seed lipids of the American cranberry (vaccinium macrocarpon). Phytochemistry, 8(11), 2219–2222.Google Scholar
  4. Dulf, F. W., Andrei, S., Bunea, A., & Socaciu, C. (2012). Fatty acid and phytosterol contents of some Romanian wild and cultivated berry pomaces. Chemical Papers, 66, 925–934.  https://doi.org/10.2478/s11696-012-0156-0.CrossRefGoogle Scholar
  5. Gabler, F. M., Smilanick, J. L., Mansour, M., Ramming, D. W., & Mackey, B. E. (2003). Correlations of morphological, anatomical, and chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology, 93, 1263–1273.CrossRefGoogle Scholar
  6. Grabowski, S., & Marcotte, M. (2003). Pretreatment efficiency in osmotic dehydration of cranberries. In J. Welti-Chanes, F. Velez-Ruiz, & G. V. Barbosa-Cįnovas (Eds.), Transport phenomena in food processing (pp. 83–94). New York: CRC Press.Google Scholar
  7. Grabowski, S., Marcotte, M., Quan, D., Taherian, A. R., Zareifard, M. R., Poirier, M. R., & Kudra, T. (2007). Kinetics and quality aspects of Canadian blueberries and cranberries dried by osmo-convective method. Drying Technology, 25, 367–374.CrossRefGoogle Scholar
  8. Gross, K. C., Wang, C. Y., & Saltveit M. (2016). The commercial storage of fruits, vegetables, and florist and nursery stocks. US Dept Agriculture Handbook No 66.Google Scholar
  9. Jetter, R., Kunst, L., & Samuels, A. L. (2007). Composition of plant cuticular waxes. In M. Riederer & C. Müller (Eds.), Biology of the plant cuticle (pp. 145–181). Oxford: Blackwell Publishing Ltd.Google Scholar
  10. Johansson, A., Laakso, P., & Kallio, H. (1997). Characterization of seed oils of wild, edible Finnish berries. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 204, 300–307.CrossRefGoogle Scholar
  11. Ketata, M., Desjardins, Y., & Ratti, C. (2013). Effect of liquid nitrogen pretreatments on osmotic dehydration of blueberries. Journal of Food Engineering, 116, 202–212.CrossRefGoogle Scholar
  12. King, J. W., & List, C. R. (1996). Supercritical fluid technology in oil and lipid chemistry. Champaign: AOCS Press.Google Scholar
  13. Klavins, L., Klavina, L., Huna, A., & Klavins, M. (2015). Polyphenols, carbohydrates and lipids in berries of Vaccinium species. Environmental and Experimental Biology, 13, 147–158.Google Scholar
  14. Klavins, L., Kviesis, J., Steinberga, I., Klavina, L., & Klavins, M. (2016). Gas chromatography-mass spectrometry study of lipids in northern berries. Agronomy Research, 14, 1328–1347.Google Scholar
  15. Klavins, M., Kukela, A., Kviesis, J., & Klavins, L. (2017). Valorisation of berry pomace: From waste to bioactive compounds. In A. Kallel, M. Ksibi, H. B. Dhia, & N. Khelifili (Eds.), Recent advances in environmental science from the Euro-Mediterranean and surrounding reģions (pp. 1145–1147). Berlin: Springer.Google Scholar
  16. Klavins, L., Kviesis, J., Nakurte, I., & Klavins, M. (2018). Berry press residues as a valuable source of polyphenolics: Extraction optimization and analysis. LWT- Food Science and Technology, 93, 583–591.  https://doi.org/10.1016/j.lwt.2018.04.021.CrossRefGoogle Scholar
  17. Kosma, D. K., Parsons, E. P., Isaacson, T., Lü, S., Rose, J. K. C., Jenks, M. A. (2010). Fruit cuticle lipid composition during development in tomato ripening mutants. Physiologia Plantarum, 139(1), 107–117.CrossRefGoogle Scholar
  18. Lara, I., Belge, B., & Goulao, L. F. (2014). The fruit cuticle as a modulator of postharvest quality. Postharvest Biology and Technology, 87, 103–112.CrossRefGoogle Scholar
  19. Laroze, L. E., Dıaz-Reinoso, B., Moure, A., Zuniga, M. E., & Domınguez, H. (2010). Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. European Food Research and Technology, 231, 669–677.  https://doi.org/10.1007/s00217-010-1320-9.CrossRefGoogle Scholar
  20. Lenucci, M. S., Caccioppola, A., Durante, M., Serrone, L., Leonardo, R., Piro, G., et al. (2010). Optimisation of biological and physical parameters for lycopene supercritical CO2 extraction from ordinary and high-pigment tomato cultivars. Journal of Science and Food Agriculture, 90, 1709–1718.CrossRefGoogle Scholar
  21. Lowenthal, M. S., Andriamaharavo, N. R., Stein, S. E., & Phinney, K. W. (2013). Characterizing vaccinium berry standard reference materials by GC-MS using NIST spectral libraries. Analytical and Bioanalytical Chemistry, 405, 4467–4476.  https://doi.org/10.1007/s00216-012-6610-6.CrossRefPubMedGoogle Scholar
  22. Martin, L. B., & Rose, J. K. (2014). There’s more than one way to skin a fruit: Formation and functions of fruit cuticles. Journal of Experimental Botany, 65, 4639–4651.CrossRefGoogle Scholar
  23. Nile, S. H. & Park, S. W. (2014). Edible berries: bioactive components and their effect on human health. Nutrition, 30(2), 134–144.Google Scholar
  24. Paredes-López, O., Cervantes-Ceja, M. L., Vigna-Pérez, M., & Hernández-Pérez, T. (2010). Berries: Improving human health and healthy aging, and promoting quality life-a review. Plant Foods for Human Nutrition, 65, 299–308.  https://doi.org/10.1007/s11130-010-0177-1.CrossRefPubMedGoogle Scholar
  25. Pertuzatti, P. B., Barcia, M. T., Rodrigues, D., da Cruz, P. N., Hermoskn-Gutiérrez, I., Smith, R., & Godoy, T. N. (2014). Antioxidant activity of hydrophilic and lipophilic extracts of Brazilian blueberries. Food Chemistry, 164, 81–88.CrossRefGoogle Scholar
  26. Riederer, M., & Schonherr, J. (1985). Accumulation and transport of (2.4 dichlorophenoxy) acetic acid in plant cuticles. Ecotoxicology and Environmental Safety, 9, 196–208.CrossRefGoogle Scholar
  27. Salaso, I. (1987). Alkane distribution in epicuticular wax of some heath plants in Norway. Biochemical Systematics and Ecology, 15, 663–665.CrossRefGoogle Scholar
  28. Salunkhe, D. K., Bolin, H. R., & Reddy, N. R. (1991). Storage, processing and nutritional quality of fruits and vegetables (pp. 1–2). Boca Raton: CRC Press.Google Scholar
  29. Szajdek, A., & Borowska, E. J. (2008). Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods for Human Nutrition, 63, 147–156.  https://doi.org/10.1007/s11130-008-0097-5.CrossRefPubMedGoogle Scholar
  30. Szakiel, A., Paczkowski, C., Koivuniemi, K., & Huttunen, S. (2012). Comparison of the triterpenoid content of berries and leaves of lingonberry Vaccinium vitis-idaea from Finland and Poland. Journal of Agricultural and Food Chemistry, 60, 4994–5002.CrossRefGoogle Scholar
  31. Yang, B., Koponen, J., Tahvonen, R., & Kallio, H. (2003). Plant sterols in seeds of two species of Vaccinium (V. myrtillus and V. vitis-idaea) naturally distributed in Finland. European Food Research and Technology, 216, 34–38.  https://doi.org/10.1007/s00217-002-0611-1.CrossRefGoogle Scholar
  32. Yang, B., Ahotupa, M., Määttä, P., & Kallio, H. (2011). Composition and antioxidative activities of supercritical CO2-extracted oils from seeds and soft parts of northern berries. Food Research International, 44, 2009–2017.CrossRefGoogle Scholar
  33. Yeats, T. H., & Rose, J. K. C. (2013). The formation and function of plant cuticles. Plant Physiology, 163, 5–20.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of LatviaRigaLatvia

Personalised recommendations