Advertisement

Hazelnut (Corylus avellana) Oil

  • Mustafa Topkafa
  • Hamide Filiz Ayyildiz
  • Huseyin Kara
Chapter

Abstract

Hazelnut (Corylus avellana), which is present since pre-agricultural times, belongs to the Betulaceae family and cultivated in many countries, such as Turkey, USA, Azerbaijan, Georgia, Spain, Portugal and France as well as in regions with temperate climate of the northern hemisphere. Hazelnut, which is annually produced approximately 850,000 tons worldwide, is used in chocolate, bakery products, snacks, and edible oil industry. The most important nutrients in the hazelnut are lipids, protein, carbohydrate, phytosterols, vitamins and minerals. The most concentrated content of these components is the oil (50–70%). Hazelnut oil is used in food, cake-biscuit, paint, cosmetics, and soap industry. In this chapter, potential and economic value of hazelnut, production methods of oil, chemical and nutritional properties, nutrient value and chemical composition of hazelnut oil are discussed. In addition, triglyceride, fatty acid, tocopherols, sterols and volatile compounds composition of hazelnut oil were highlighted. The health effects of bioactive lipids such as the proper functioning of the human body, growth and physiological functions are reported in the main headings. The chemical profile of hazelnut oil is very similar to olive oil, wherein olive oil is adulterated with hazelnut oil. For this reason, adulteration of olive oil with hazelnut oil is evaluated in last main heading.

Keywords

Betulaceae Fatty acid Tocopherols Sterols Volatile compounds 

References

  1. Alasalvar, C., & Shahidi, F. (2008). Tree nuts: Composition, phytochemicals, and health effects. Boca Raton: CRC Press.CrossRefGoogle Scholar
  2. Alasalvar, C., Shahidi, F., Ohshima, T., Wanasundara, U., Yurttas, H. C., Liyanapathirana, C. M., & Rodrigues, F. B. (2003). Turkish Tombul hazelnut (Corylus avellana L.). 2. Lipid characteristics and oxidative stability. Journal of Agricultural and Food Chemistry, 51(13), 3797–3805.PubMedCrossRefGoogle Scholar
  3. Alasalvar, C., Amaral, J. S., Satır, G., & Shahidi, F. (2009). Lipid characteristics and essential minerals of native Turkish hazelnut varieties (Corylus avellana L.). Food Chemistry, 113(4), 919–925.CrossRefGoogle Scholar
  4. Altuntas, A. H., Ketenoglu, O., Cetinbas, S., Erdogdu, F., & Tekin, A. (2018). Deacidification of Crude Hazelnut Oil Using Molecular Distillation-Multiobjective Optimization for Free Fatty Acids and Tocopherol. European Journal of Lipid Science and Technology, 113, 637–643.Google Scholar
  5. Amaral, J. S., Casal, S., Torres, D., Seabra, R. M., & Oliveira, B. P. (2005). Simultaneous determination of tocopherols and tocotrienols in hazelnuts by a normal phase liquid chromatographic method. Analytical Sciences, 21(12), 1545–1548.PubMedCrossRefGoogle Scholar
  6. Amaral, J. S., Casal, S., Citová, I., Santos, A., Seabra, R. M., & Oliveira, B. P. P. (2006). Characterization of several hazelnut (Corylus avellana L.) cultivars based in chemical, fatty acid and sterol composition. European Food Research and Technology, 222(3), 274–280.CrossRefGoogle Scholar
  7. Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970–7981.PubMedCrossRefGoogle Scholar
  8. Atalayoğlu, G., & Çakmak, M. N. (2010). Pullu Sazan (Cyprinus carpio L. 1843) Yemlerinde Fındık Küspesinin Kullanılma Olanaklarının Araştırılması. Firat University Journal of Science, 22(2), 71.Google Scholar
  9. Awad, A. B., & Fink, C. S. (2000). Phytosterols as anticancer dietary components: Evidence and mechanism of action. The Journal of Nutrition, 130(9), 2127–2130.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ayyildiz, H. F. T., Mustafa, Kara, H., & Sherazi, S. T. H. (2015). Evaluation of fatty acid composition, tocols profile, and oxidative stability of some fully refined edible oils. International Journal of Food Properties, 18(9), 2064–2076.CrossRefGoogle Scholar
  11. Bada, J. C., León-Camacho, M., Prieto, M., & Alonso, L. (2004). Characterization of oils of hazelnuts from Asturias, Spain. European Journal of Lipid Science and Technology, 106(5), 294–300.CrossRefGoogle Scholar
  12. Baeten, V., Fernández Pierna, J. A., Dardenne, P., Meurens, M., García-González, D. L., & Aparicio-Ruiz, R. (2005). Detection of the presence of hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy. Journal of Agricultural and Food Chemistry, 53(16), 6201–6206.PubMedCrossRefGoogle Scholar
  13. Balkan, J., Hatipoǧlu, A., Aykaç-Toker, G., & Uysal, M. (2003). Influence on hazelnut oil administration on peroxidation status of erythrocytes and apolipoprotein B 100-containing lipoproteins in rabbits fed on a high cholesterol diet. Journal of Agricultural and Food Chemistry, 51(13), 3905–3909.PubMedCrossRefGoogle Scholar
  14. Benitez-Sánchez, P. L., León-Camacho, M., & Aparicio, R. (2003). A comprehensive study of hazelnut oil composition with comparisons to other vegetable oils, particularly olive oil. European Food Research and Technology, 218(1), 13–19.CrossRefGoogle Scholar
  15. Bernardo-Gil, M. G. G., João, Santos, J., & Cardoso, P. (2002). Supercritical fluid extraction and characterisation of oil from hazelnut. European Journal of Lipid Science and Technology, 104(7), 402–409.CrossRefGoogle Scholar
  16. Bilgin, Ö., Ali, T., & Tekinay, A. A. (2007). The use of hazelnut meal as a substitute for soybean meal in the diets of rainbow trout (Oncorhynchus mykiss). Turkish Journal of Veterinary and Animal Sciences, 31(3), 145–151.Google Scholar
  17. Brignole, E. A. (1986). Supercritical fluid extraction. Fluid Phase Equilibria, 29, 133–144.CrossRefGoogle Scholar
  18. Burton, G. W. (1994). Vitamin E: Molecular and biological function. Proceedings of the Nutrition Society, 53(02), 251–262.PubMedCrossRefGoogle Scholar
  19. Burton, G. W., & Traber, M. G. (1990). Vitamin E: Antioxidant activity, biokinetics, and bioavailability. Annual Review of Nutrition, 10(1), 357–382.PubMedCrossRefGoogle Scholar
  20. Caja, M. d. M., Del Castillo, M. R., Alvarez, R. M., Herraiz, M., & Blanch, G. P. (2000). Analysis of volatile compounds in edible oils using simultaneous distillation-solvent extraction and direct coupling of liquid chromatography with gas chromatography. European Food Research and Technology, 211(1), 45–51.CrossRefGoogle Scholar
  21. Castelo-Branco, V. N., Santana, I., Di-Sarli, V. O., Freitas, S. P., & Torres, A. G. (2016). Antioxidant capacity is a surrogate measure of the quality and stability of vegetable oils. European Journal of Lipid Science and Technology, 118(2), 224–235.CrossRefGoogle Scholar
  22. Cercaci, L., Rodriguez-Estrada, M. T., & Lercker, G. (2003). Solid-phase extraction-thin-layer chromatography-gas chromatography method for the detection of hazelnut oil in olive oils by determination of esterified sterols. Journal of Chromatography A, 985(1–2), 211–220.PubMedCrossRefGoogle Scholar
  23. Christy, A. A., Kasemsumran, S., Du, Y., & OZAKI, Y. (2004). The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Analytical Sciences, 20(6), 935–940.PubMedCrossRefGoogle Scholar
  24. Ciemniewska-Żytkiewicz, H., Ratusz, K., Bryś, J., Reder, M., & Koczoń, P. (2014). Determination of the oxidative stability of hazelnut oils by PDSC and Rancimat methods. Journal of Thermal Analysis and Calorimetry, 118(2), 875–881.CrossRefGoogle Scholar
  25. Ciemniewska-Żytkiewicz, H., Bryś, J., Sujka, K., & Koczoń, P. (2015). Assessment of the hazelnuts roasting process by pressure differential scanning calorimetry and MID-FT-IR spectroscopy. Food Analytical Methods, 8(10), 2465–2473.CrossRefGoogle Scholar
  26. Damirchi, S. A., Savage, G. P., & Dutta, P. C. (2005). Sterol fractions in hazelnut and virgin olive oils and 4, 4′-dimethylsterols as possible markers for detection of adulteration of virgin olive oil. Journal of the American Oil Chemists’ Society, 82(10), 717–725.CrossRefGoogle Scholar
  27. Doğan, G., & Bircan, R. (2010). Balık yemlerinde alternatif bitkisel protein kaynağı olarak fındık küspesi kullanımı. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1(2), 49–57.Google Scholar
  28. Dong, Z., Zhang, J.-G., Tian, K.-W., Pan, W.-J., & Wei, Z.-J. (2014). The fatty oil from okra seed: Supercritical carbon dioxide extraction, composition and antioxidant activity. Current Topics in Nutraceutical Research, 12(3), 75–84.Google Scholar
  29. Espín, J. C., Soler-Rivas, C., & Wichers, H. J. (2000). Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2, 2-diphenyl-1-picrylhydrazyl radical. Journal of Agricultural and Food Chemistry, 48(3), 648–656.PubMedCrossRefGoogle Scholar
  30. EU. (2017). Codex Alimentarius Commission, Agenda Item 11, CODEX STAN 210-1999 (Vol. 2018). Malaysia: European Union.Google Scholar
  31. FAO. (2018). Agricultural statistical database (Vol. 2013). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  32. Fernandes, G. D., Gómez-Coca, R. B., Pérez-Camino, M. D. C., Moreda, W., Barrera-Arellano, D. (2017). Chemical characterization of major and minor compounds of nut oils: Almond, hazelnut, and pecan nut. Journal of Chemistry, 2017, 1–11.CrossRefGoogle Scholar
  33. Gillingham, L. G., Harris-Janz, S., & Jones, P. J. (2011). Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids, 46(3), 209–228.PubMedCrossRefGoogle Scholar
  34. Hargrove, R. L., Etherton, T. D., Pearson, T. A., Harrison, E. H., & Kris-Etherton, P. M. (2001). Low fat and high monounsaturated fat diets decrease human low density lipoprotein oxidative susceptibility in vitro. The Journal of Nutrition, 131(6), 1758–1763.PubMedCrossRefGoogle Scholar
  35. Hatipoglu, A., Kanbaglı, Ö., Balkan, J., Küçük, M., Cevikbas, U., Aykaç-Toker, G., Berkkan, H., & Uysal, M. (2004). Hazelnut oil administration reduces aortic cholesterol accumulation and lipid peroxides in the plasma, liver, and aorta of rabbits fed a high-cholesterol diet. Bioscience, Biotechnology, and Biochemistry, 68(10), 2050–2057.PubMedCrossRefGoogle Scholar
  36. Karabulut, I., Topcu, A., Yorulmaz, A., Tekin, A., & Ozay, D. S. (2005). Effects of the industrial refining process on some properties of hazelnut oil. European Journal of Lipid Science and Technology, 107(7–8), 476–480.CrossRefGoogle Scholar
  37. Katan, M. B., Grundy, S. M., Jones, P., Law, M., Miettinen, T., & Paoletti, R. (2003). Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clinic Proceedings, 78, 965–978. Elsevier.PubMedCrossRefGoogle Scholar
  38. Kritchevsky, D., & Chen, S. C. (2005). Phytosterols-health benefits and potential concerns: A review. Nutrition Research, 25(5), 413–428.CrossRefGoogle Scholar
  39. Mildner-Szkudlarz, S., & Jeleń, H. H. (2008). The potential of different techniques for volatile compounds analysis coupled with PCA for the detection of the adulteration of olive oil with hazelnut oil. Food Chemistry, 110(3), 751–761.CrossRefGoogle Scholar
  40. Miraliakbari, H., & Shahidi, F. (2008). Antioxidant activity of minor components of tree nut oils. Food Chemistry, 111(2), 421–427.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Tasan. M., Gecgel, U., & Daglioglu, O. (2008). Hazelnut oil production in Turkey. In 6th Euro fed lipid congress, oils, fats and lipids in the 3rd millennium. Athens: Euro Fed Lipid.Google Scholar
  42. Özçakmak, S., & Çetinkaya, A. (2016). HACCP Sistemi Uygulaması ile Fındık Küspesindeki Aflatoksinin Kontrolü. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(2), 1–14.Google Scholar
  43. Ozen, N., & Erener, G. (1992). Research note: Utilizing hazelnut kernel oil meal in layer diets. Poultry Science, 71(3), 570–573.PubMedCrossRefGoogle Scholar
  44. Özkal, S., Salgın, U., & Yener, M. (2005a). Supercritical carbon dioxide extraction of hazelnut oil. Journal of Food Engineering, 69(2), 217–223.CrossRefGoogle Scholar
  45. Özkal, S., Yener, M., Salgın, U., & Mehmetoğlu, Ü. (2005b). Response surfaces of hazelnut oil yield in supercritical carbon dioxide. European Food Research and Technology, 220(1), 74–78.CrossRefGoogle Scholar
  46. Parcerisa, J., Richardson, D. G., Rafecas, M., Codony, R., & Boatella, J. (1997). Fatty acid distribution in polar and nonpolar lipid classes of hazelnut oil (Corylus avellana L.). Journal of Agricultural and Food Chemistry, 45(10), 3887–3890.CrossRefGoogle Scholar
  47. Parcerisa, J., Codony, R., Boatella, J., & Rafecas, M. (1999). Triacylglycerol and phospholipid composition of hazelnut (Corylus avellana L.) lipid fraction during fruit development. Journal of Agricultural and Food Chemistry, 47(4), 1410–1415.PubMedCrossRefGoogle Scholar
  48. Parker, T. D., Adams, D., Zhou, K., Harris, M., & Yu, L. (2003). Fatty acid composition and oxidative stability of cold-pressed edible seed oils. Journal of Food Science, 68(4), 1240–1243.CrossRefGoogle Scholar
  49. Parry, J., Hao, Z., Luther, M., Su, L., Zhou, K., & Yu, L. L. (2006). Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils. Journal of the American Oil Chemists’ Society, 83(10), 847–854.Google Scholar
  50. Raicht, R. F., Cohen, B. I., Fazzini, E. P., Sarwal, A. N., & Takahashi, M. (1980). Protective effect of plant sterols against chemically induced colon tumors in rats. Cancer Research, 40(2), 403–405.PubMedGoogle Scholar
  51. Ramadan, M. F. (2013). Healthy blends of high linoleic sunflower oil with selected cold pressed oils: Functionality, stability and antioxidative characteristics. Industrial Crops and Products, 43, 65–72.CrossRefGoogle Scholar
  52. Saldeen, T., Li, D., & Mehta, J. L. (1999). Differential effects of α-and γ-tocopherol on low-density lipoprotein oxidation, superoxide activity, platelet aggregation and arterial thrombogenesis. Journal of the American College of Cardiology, 34(4), 1208–1215.PubMedCrossRefGoogle Scholar
  53. Sanagi, M. M., See, H., Ibrahim, W. A. W., & Naim, A. A. (2005). Determination of carotene, tocopherols and tocotrienols in residue oil from palm pressed fiber using pressurized liquid extraction-normal phase liquid chromatography. Analytica Chimica Acta, 538(1), 71–76.CrossRefGoogle Scholar
  54. Sánchez, V., & Lutz, M. (1998). Fatty acid composition of microsomal phospholipids in rats fed different oils and antioxidant vitamins supplement 1. The Journal of Nutritional Biochemistry, 9(3), 155–163.CrossRefGoogle Scholar
  55. Saremi, A., & Arora, R. (2010). Vitamin E and cardiovascular disease. American Journal of Therapeutics, 17(3), e56–e65.PubMedCrossRefGoogle Scholar
  56. Saricicek, B. (2000). Protected (bypass) protein and feed value of hazelnut kernel oil meal. Asian-Australasian Journal of Animal Sciences, 13(3), 317–322.CrossRefGoogle Scholar
  57. Schwartz, H., Ollilainen, V., Piironen, V., & Lampi, A.-M. (2008). Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. Journal of Food Composition and Analysis, 21(2), 152–161.CrossRefGoogle Scholar
  58. Şehu, A. Y., Sakine, & Kaya, İ. (1996). Bıldırcın rasyonlarına katılan fındık küspesinin büyüme ve karkas randımanı üzerine etkisi. Ankara Universitesi Veteriner Fakultesi Dergisi, 43, 163–168.Google Scholar
  59. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. Elsevier.CrossRefGoogle Scholar
  60. Slatnar, A., Mikulic-Petkovsek, M., Stampar, F., Veberic, R., & Solar, A. (2014). HPLC-MSn identification and quantification of phenolic compounds in hazelnut kernels, oil and bagasse pellets. Food Research International, 64, 783–789.PubMedCrossRefGoogle Scholar
  61. de Sousa Ferreira Soares, G., Gomes, V. D. M., dos Reis Albuquerque, A., Barbosa Dantas, M., Rosenhain, R., Souza, A. G. D., Persunh, D. C., Gadelha, C. A. D. A., Costa, M. J. D. C., & Gadelha, T. S. (2012). Spectroscopic and thermooxidative analysis of organic okra oil and seeds from Abelmoschus esculentus. The Scientific World Journal, 2012, 1–6.CrossRefGoogle Scholar
  62. Szydłowska-Czerniak, A., Dianoczki, C., Recseg, K., Karlovits, G., & Szłyk, E. (2008). Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta, 76(4), 899–905.PubMedCrossRefGoogle Scholar
  63. Topkafa, M. (2016). Evaluation of chemical properties of cold pressed onion, okra, rosehip, safflower and carrot seed oils: Triglyceride, fatty acid and tocol compositions. Analytical Methods, 8(21), 4220–4225.CrossRefGoogle Scholar
  64. Topkafa, M., Kara, H., & Sherazi, S. T. H. (2015). Evaluation of the triglyceride composition of pomegranate seed oil by RP-HPLC followed by GC-MS. Journal of the American Oil Chemists’ Society, 92(6), 791–800.CrossRefGoogle Scholar
  65. Tuberoso, C. I., Kowalczyk, A., Sarritzu, E., & Cabras, P. (2007). Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chemistry, 103(4), 1494–1501.CrossRefGoogle Scholar
  66. Tunç, İ., Çalışkan, F., Özkan, G., & Karacabey, E. (2014). Mikrodalga destekli soxhlet cihazı ile fındık yağı ekstraksiyonunun yanıt yüzey yöntemi ile optimizasyonu. Akademik Gıda, 12(1), 20–28.Google Scholar
  67. Zlatanov, M., Ivanov, S., & Aitzetmüller, K. (1999). Phospholipid and fatty acid composition of Bulgarian nut oils. Lipid/Fett, 101(11), 437–439.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mustafa Topkafa
    • 1
  • Hamide Filiz Ayyildiz
    • 2
  • Huseyin Kara
    • 3
  1. 1.Vocational School of Technical Sciences, Department of Chemistry and Chemical TechnologiesKonya Technical UniversityKonyaTurkey
  2. 2.Faculty of Pharmacy, Department of Basic Pharmaceutical SciencesSelcuk UniversityKonyaTurkey
  3. 3.Faculty of Science, Department of ChemistrySelcuk UniversityKonyaTurkey

Personalised recommendations