Chemical Mechanical Polishing of Nanocrystalline Diamond

  • Soumen MandalEmail author
  • Evan L. H. Thomas
  • Jessica M. Werrell
  • Georgina M. Klemencic
  • Johnathan Ash
  • Emmanuel B. Brousseau
  • Oliver A. Williams
Part of the Topics in Applied Physics book series (TAP, volume 121)


In this chapter the chemical mechanical polishing of nanocrystalline diamond film is presented. It is shown that it is possible to polish a superhard material like nanocrystalline diamond with a much softer material like silica. It has also been demonstrated that this technique can be used for removing polishing marks on single crystal diamond. Experiments with other oxides like ceria and alumina showed polishing action on nanocrystalline diamond films. Surface roughness reduction rate was found to be inversely proportional to the size of abrasive material. Addition of redox agents to the polishing slurry accelerated the roughness reduction of nanocrystalline diamond films. Based on the experimental results and theoretical studies by other groups we have proposed a polishing mechanism for chemical mechanical polishing of diamond. Lastly, we have applied this technique to study its effect on superconducting diamond films. It was found that even after 14 h of polishing, superconductivity in diamond remained unchanged.


Chemical mechanical polishing Nanocrystalline diamond Single crystal diamond Boron doped diamond SF1 Size dependence SUBA-X Superconductivity 



The results presented in this chapter was supported by EPSRC under the grant ‘Nanocrystalline diamond for Micro-Electro-Mechanical-Systems’ reference number EP/J009814/1 and European Research Council (ERC) Consolidator Grant for the development of ‘Superconducting Diamond Quantum Nano-Electro-Mechanical Systems’, Project ID: 647471.


  1. 1.
    O.A. Williams, Nanocrystalline diamond. Diam. Relat. Mater. 20, 621–640 (2011). Scholar
  2. 2.
    O.A. Williams, A. Kriele, J. Hees, et al., High young’s modulus in ultra thin nanocrystalline diamond. Chem. Phys. Lett. 495, 84–89 (2010).
  3. 3.
    M.A. Angadi, T. Watanabe, A. Bodapati et al., Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. J. Appl. Phys. 99, 114301 (2006). Scholar
  4. 4.
    M. Imboden, O. Williams, P. Mohanty, Nonlinear dissipation in diamond nanoelectromechanical resonators. Appl. Phys. Lett. 102 (2013).
  5. 5.
    T. Bautze, S. Mandal, O.A. Williams et al., Superconducting nano-mechanical diamond resonators. Carbon 72, 100–105 (2014). Scholar
  6. 6.
    J.G. Rodriguez-Madrid, G.F. Iriarte, J. Pedros et al., Super-high-frequency SAW resonators on AlN/diamond. IEEE Electron Device Lett. 33, 495–497 (2012). Scholar
  7. 7.
    O.A. Williams, O. Douhéret, M. Daenen, et al., Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445, 255–258 (2007).
  8. 8.
    X. Jiang, K. Schiffmann, C.-P.P. Klages, Nucleation and initial growth phase of diamond thin films on (100) silicon. Phys. Rev. B 50, 8402–8410 (1994). Scholar
  9. 9.
    P. Smereka, X. Li, G. Russo, D.J. Srolovitz, Simulation of faceted film growth in three dimensions: microstructure, morphology and texture. Acta Mater. 53, 1191–1204 (2005). Scholar
  10. 10.
    O. Ergincan, G. Palasantzas, B.J. Kooi, Influence of surface modification on the quality factor of microresonators. Phys. Rev. B 85, 205420 (2012). Scholar
  11. 11.
    G.F. Iriarte, J.G. Rodríguez, F. Calle, Synthesis of c-axis oriented AlN thin films on different substrates: a review. Mater. Res. Bull. 45, 1039–1045 (2010). Scholar
  12. 12.
    R.B. Simon, J. Anaya, F. Faili, et al., Effect of grain size of polycrystalline diamond on its heat spreading properties. Appl. Phys. Express 9 (2016).
  13. 13.
    J. Anaya, T. Bai, Y. Wang et al., Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond. Acta Mater. 139, 215–225 (2017). Scholar
  14. 14.
    Y. Chen, L. Zhang, Polishing of Diamond Materials (Springer, London, 2013)CrossRefGoogle Scholar
  15. 15.
    L. Pastewka, S. Moser, P. Gumbsch, M. Moseler, Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10, 34–38 (2011). Scholar
  16. 16.
    A. Malshe, B. Park, W. Brown, H. Naseem, A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates. Diam. Relat. Mater. 8, 1198–1213 (1999). Scholar
  17. 17.
    I. Friel, S.L. Clewes, H.K. Dhillon et al., Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition. Diam. Relat. Mater. 18, 808–815 (2009). Scholar
  18. 18.
    T. Schuelke, T.A. Grotjohn, Diamond polishing. Diam. Relat. Mater. 32, 17–26 (2013).
  19. 19.
    C.D. Ollison, W.D. Brown, A.P. Malshe, et al., A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond. Diam. Relat. Mater. 8, 1083–1090 (1999).
  20. 20.
    E.L.H. Thomas, G.W. Nelson, S. Mandal et al., Chemical mechanical polishing of thin film diamond. Carbon 68, 473–479 (2014). Scholar
  21. 21.
    J. Luo, D.A. Dornfeld, Material removal regions in chemical mechanical planarization for submicron integrated circuit fabrication: coupling effects of slurry chemicals, abrasive size distribution, and wafer-pad contact area. IEEE Trans. Semicond. Manuf. 16, 45–56 (2003). Scholar
  22. 22.
    P.B. Zantye, A. Kumar, A.K. Sikder, Chemical mechanical planarization for microelectronics applications. Mater. Sci. Eng. R Rep. 45, 89–220 (2004). Scholar
  23. 23.
    G.M. Klemencic, S. Mandal, J.M. Werrell et al., Superconductivity in planarised nanocrystalline diamond films. Sci. Technol. Adv. Mater. 18, 239–244 (2017). Scholar
  24. 24.
    J.M. Werrell, S. Mandal, E.L.H. Thomas et al., Effect of slurry composition on the chemical mechanical polishing of thin diamond films. Sci. Technol. Adv. Mater. 18, 654–663 (2017). Scholar
  25. 25.
    S. Mandal, E.L.H. Thomas, L. Gines et al., Redox agent enhanced chemical mechanical polishing of thin film diamond. Carbon 130, 25–30 (2018). Scholar
  26. 26.
    G.M. Pharr, D.L. Callahan, S.D. McAdams et al., Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse biasing. Appl. Phys. Lett. 68, 779–781 (1996). Scholar
  27. 27.
    B. Hussey, J. Wilson, Advanced Technical Ceramics Directory and Databook (Springer, US, Boston, MA, 1998)CrossRefGoogle Scholar
  28. 28.
    N. Elbel, Tungsten Chemical Mechanical Polishing. J. Electrochem. Soc. 145, 1659 (1998). Scholar
  29. 29.
    C. Li, I.B. Bhat, R. Wang, J. Seiler, Electro-chemical mechanical polishing of silicon carbide. J. Electron. Mater. 33, 481–486 (2004). Scholar
  30. 30.
    C. Spiro, G. Steuer, F.B. Kaufman, Method of polishing a tungsten carbide, US8162723B2 (2006)Google Scholar
  31. 31.
    C.D. Wagner, L.E. Davis, M.V. Zeller et al., Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 3, 211–225 (1981). Scholar
  32. 32.
    J.I. Wilson, J. Walton, G. Beamson, Analysis of chemical vapour deposited diamond films by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 121, 183–201 (2001). Scholar
  33. 33.
    S. Ferro, M. Dal Colle, A. De Battisti, Chemical surface characterization of electrochemically and thermally oxidized boron-doped diamond film electrodes. Carbon 43, 1191–1203 (2005). Scholar
  34. 34.
    S. Jin, J.E. Graebner, G.W. Kammlott et al., Massive thinning of diamond films by a diffusion process. Appl. Phys. Lett. 60, 1948–1950 (1992). Scholar
  35. 35.
    A. Hirata, H. Tokura, M. Yoshikawa, Smoothing of chemically vapour deposited diamond films by ion beam irradiation. Thin Solid Films 212, 43–48 (1992). Scholar
  36. 36.
    A.M. Ozkan, A.P. Malshe, W.D. Brown, Sequential multiple-laser-assisted polishing of free-standing CVD diamond substrates. Diam. Relat. Mater. 6, 1789–1798 (1997). Scholar
  37. 37.
    R.H. Olsen, D.K. Aspinwall, R.C. Dewes, Electrical discharge machining of conductive CVD diamond tool blanks. J. Mater. Process. Technol. 155–156, 1227–1234 (2004). Scholar
  38. 38.
    Y. Chen, L. Zhang, Mechanical Polishing, Polishing of Diamond Materials: Mechanisms, Modeling and Implementation (Springer, London, 2013), pp. 25–44CrossRefGoogle Scholar
  39. 39.
    R.M. Denning, Directional grinding hardness in diamond. Am. Min. 38, 108–117 (1953)Google Scholar
  40. 40.
    H. Whittaker, C.B. Slawson, Vector hardness in diamond tools. Am. Min. 31, 143–149 (1946)Google Scholar
  41. 41.
    E.H. Kraus, C.B. Slawson, Variation of hardness in the diamond. Am. Min. 24, 661–676 (1939)Google Scholar
  42. 42.
    S.E. Grillo, J.E. Field, The polishing of diamond. J. Phys. D Appl. Phys. 30, 202–209 (1997). Scholar
  43. 43.
    S.E. Grillo, J.E. Field, F.M. Van Bouwelen, Diamond polishing: the dependency of friction and wear on load and crystal orientation. J. Phys. D Appl. Phys. 33, 985–990 (2000). Scholar
  44. 44.
    M.P. Hitchiner, E.M. Wilks, J. Wilks, The polishing of diamond and diamond composite materials. Wear 94, 103–120 (1984). Scholar
  45. 45.
    W.J. Huisman, J.F. Peters, S.A. de Vries et al., Structure and morphology of the as-polished diamond(111) −1 × 1 surface. Surf. Sci. 387, 342–353 (1997). Scholar
  46. 46.
    M.R. Jarvis, R. Perez, F.M. van Bouwelen, M.C. Payne, Microscopic mechanism for mechanical polishing of diamond (110) surfaces. Phys. Rev. Lett. 80, 3428–3431 (1998). Scholar
  47. 47.
    J.R. Hird, J.E. Field, Diamond polishing. Proc. R Soc. Math. Phys. Eng. Sci. 460, 3547–3568 (2004). Scholar
  48. 48.
    P.N. Volpe, P. Muret, F. Omnes et al., Defect analysis and excitons diffusion in undoped homoepitaxial diamond films after polishing and oxygen plasma etching. Diam. Relat. Mater. 18, 1205–1210 (2009). Scholar
  49. 49.
    A. Gaisinskaya, R. Edrei, A. Hoffman, Y. Feldheim, Morphological evolution of polished single crystal (100) diamond surface exposed to microwave hydrogen plasma. Diam. Relat. Mater. 18, 1466–1473 (2009). Scholar
  50. 50.
    A.B. Shorey, K.M. Kwong, K.M. Johnson, S.D. Jacobs, Nanoindentation hardness of particles used in magnetorheological finishing (MRF). Appl. Opt. 39, 5194 (2000). Scholar
  51. 51.
    M. Bielmann, Effect of particle size during tungsten chemical mechanical polishing. Electrochem. Solid-State Lett. 2, 401 (1999). Scholar
  52. 52.
    D. Tamboli, G. Banerjee, M. Waddell, Novel interpretations of CMP removal rate dependencies on slurry particle size and concentration. Electrochem. Solid-State Lett. 7, F62 (2004). Scholar
  53. 53.
    Z. Zhang, W. Liu, Z. Song, Particle size and surfactant effects on chemical mechanical polishing of glass using silica-based slurry. Appl. Opt. 49, 5480 (2010). Scholar
  54. 54.
    C. Liu, B. Dai, W. Tseng, C. Yeh, Modeling of the wear mechanism during chemical-mechanical polishing. J. Electrochem. Soc. 143, 716 (1996). Scholar
  55. 55.
    Y. Wang, Y. Zhao, W. An et al., Modeling effects of abrasive particle size and concentration on material removal at molecular scale in chemical mechanical polishing. Appl. Surf. Sci. 257, 249–253 (2010). Scholar
  56. 56.
    A. Peguiron, G. Moras, M. Walter et al., Activation and mechanochemical breaking of C–C bonds initiate wear of diamond (110) surfaces in contact with silica. Carbon 98, 474–483 (2016). Scholar
  57. 57.
    T. Kuwahara, G. Moras, M. Moseler, Friction regimes of water-lubricated diamond (111): role of interfacial ether groups and tribo-induced aromatic surface reconstructions. Phys. Rev. Lett. 119, 96101 (2017). Scholar
  58. 58.
    H. Hocheng, C.C.C. Chen, H.H. Cheng, C.C.C. Chen, Chemical-assisted mechanical polishing of diamond film on wafer. Mater. Sci. Forum 505–507, 1225–1230 (2006). Scholar
  59. 59.
    Y. Liu, K. Zhang, F. Wang, Y. Han, Study on the cleaning of silicon after CMP in ULSI. Microelectron. Eng. 66, 433–437 (2003). Scholar
  60. 60.
    S. Ghodbane, D. Ballutaud, F. Omnès, C. Agnès, Comparison of the XPS spectra from homoepitaxial 111}, {100 and polycrystalline boron-doped diamond films. Diam. Relat. Mater. 19, 630–636 (2010). Scholar
  61. 61.
    F. Klauser, S. Ghodbane, R. Boukherroub et al., Comparison of different oxidation techniques on single-crystal and nanocrystalline diamond surfaces. Diam. Relat. Mater. 19, 474–478 (2010). Scholar
  62. 62.
    M.Y. Tsai, S.T. Chen, Y.S. Liao, J. Sung, Novel diamond conditioner dressing characteristics of CMP polishing pad. Int. J. Mach. Tools Manuf 49, 722–729 (2009). Scholar
  63. 63.
    Y.C. Kim, S.J.L. Kang, Novel CVD diamond-coated conditioner for improved performance in CMP processes. Int. J. Mach. Tools Manuf 51, 565–568 (2011). Scholar
  64. 64.
    F.K. De Theije, O. Roy, N.J. Van Der Laag, W.J.P. Van Enckevort, Oxidative etching of diamond. Diam. Relat. Mater. 9, 929–934 (2000). Scholar
  65. 65.
    F.K. De-Theije, E. van-Veenendaal, W.J.P. van-Enckevort, E. Vlieg, Oxidative etching of cleaved synthetic diamond {111} surfaces. Surf. Sci. 492, 91–105 (2001).
  66. 66.
    Y. Yao, Y. Ishikawa, Y. Sugawara et al., Fast removal of surface damage layer from single crystal diamond by using chemical etching in molten KCl + KOH solution. Diam. Relat. Mater. 63, 86–90 (2016). Scholar
  67. 67.
    M. Krishnan, J.W. Nalaskowski, L.M. Cook, Chemical mechanical planarization: slurry chemistry, materials, and mechanisms. Chem. Rev. 110, 178–204 (2010). Scholar
  68. 68.
    H. Hocheng, H.Y. Tsai, Y.T. Su, Modeling and experimental analysis of the material removal rate in the chemical mechanical planarization of dielectric films and bare silicon wafers. J. Electrochem. Soc. 148, G581 (2001). Scholar
  69. 69.
    G. Moras, L. Pastewka, M. Walter et al., Progressive shortening of sp-hybridized carbon chains through oxygen-induced cleavage. J. Phys. Chem. C 115, 24653–24661 (2011). Scholar
  70. 70.
    G. Moras, L. Pastewka, P. Gumbsch, M. Moseler, Formation and oxidation of linear carbon chains and their role in the wear of carbon materials. Tribol. Lett. 44, 355–365 (2011). Scholar
  71. 71.
    D. Wu, Y.C. Ma, Z.L. Wang et al., Optical properties of boron-doped diamond. Phys. Rev. B 73, 12501 (2006). Scholar
  72. 72.
    V.S. Vavilov, Semiconducting diamond. Phys. Status Solidi 31, 11–26 (1975). Scholar
  73. 73.
    M.I. Eremets, Semiconducting diamond. Semicond. Sci. Technol. 6, 439–444 (1991). Scholar
  74. 74.
    T. Tshepe, J. Prins, M. Hoch, Metal–insulator transition in boron-ion implanted type IIa diamond. Diam. Relat. Mater. 8, 1508–1510 (1999). Scholar
  75. 75.
    E.A. Ekimov, V.A. Sidorov, E.D. Bauer et al., Superconductivity in diamond. Nature 428, 542–545 (2004). Scholar
  76. 76.
    E. Bustarret, J. Kačmarčik, C. Marcenat et al., Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films. Phys. Rev. Lett. 93, 237005 (2004). Scholar
  77. 77.
    F. Dahlem, P. Achatz, O.A. Williams, et al., Nanocrystalline boron-doped diamond films, a mixture of BCS-like and non-BCS-like superconducting grains. Phys. Status Solidi. 207, 2064–2068 (2010).
  78. 78.
    Z.L. Wang, Q. Luo, L.W. Liu et al., The superconductivity in boron-doped polycrystalline diamond thick films. Diam. Relat. Mater. 15, 659–663 (2006). Scholar
  79. 79.
    Y. Takano, M. Nagao, T. Takenouchi et al., Superconductivity in polycrystalline diamond thin films. Diam. Relat. Mater. 14, 1936–1938 (2005). Scholar
  80. 80.
    S. Mandal, C. Naud, O.A. Williams et al., Nanostructures made from superconducting boron-doped diamond. Nanotechnology 21, 195303 (2010). Scholar
  81. 81.
    S. Mandal, C. Naud, O.A. Williams, et al., Detailed study of superconductivity in nanostructured nanocrystalline boron doped diamond thin films. Phys. Status Solidi. 207, 2017–2022 (2010).
  82. 82.
    G.M. Klemencic, J.M. Fellows, J.M. Werrell et al., Fluctuation spectroscopy as a probe of granular superconducting diamond films. Phys. Rev. Mater. 1, 44801 (2017). Scholar
  83. 83.
    N. Titova, A.I. Kardakova, N. Tovpeko et al., Slow electron-phonon cooling in superconducting diamond films. IEEE Trans. Appl. Supercond. 27, 1–4 (2017). Scholar
  84. 84.
    M. Watanabe, A. Kawano, S. Kitagoh et al., Stacked SNS Josephson junction of all boron doped diamond. Phys. C Supercond. Appl. 470, S613–S615 (2010). Scholar
  85. 85.
    S. Mandal, T. Bautze, O.A. Williams et al., The diamond superconducting quantum interference device. ACS Nano 5, 7144–7148 (2011). Scholar
  86. 86.
    M. Watanabe, R. Kanomata, S. Kurihara et al., Vertical SNS weak-link Josephson junction fabricated from only boron-doped diamond. Phys. Rev. B Condens. Matter. Mater. Phys. 85, 3–4 (2012). Scholar
  87. 87.
    J. Zhang, J.W. Zimmer, R.T. Howe, R. Maboudian, Characterization of boron-doped micro- and nanocrystalline diamond films deposited by wafer-scale hot filament chemical vapor deposition for MEMS applications. Diam. Relat. Mater. 17, 23–28 (2008). Scholar
  88. 88.
    M. Imboden, P. Mohanty, Dissipation in nanoelectromechanical systems. Phys. Rep. 534, 89–146 (2014). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Soumen Mandal
    • 1
    Email author
  • Evan L. H. Thomas
    • 1
  • Jessica M. Werrell
    • 1
  • Georgina M. Klemencic
    • 1
  • Johnathan Ash
    • 1
    • 2
  • Emmanuel B. Brousseau
    • 3
  • Oliver A. Williams
    • 1
  1. 1.School of Physics and AstronomyCardiff UniversityCardiffUK
  2. 2.Department of PhysicsAberystwyth UniversityAberystwythUK
  3. 3.School of EngineeringCardiff UniversityCardiffUK

Personalised recommendations