Advertisement

Electrochemical Applications of Conductive Diamond Powders

  • Takeshi KondoEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

Heavily boron-doped diamond (BDD) has drawn attention as a functional electrode material that exhibits unique electrochemical properties such as wide potential window and low background current. A BDD electrode is usually fabricated by depositing a polycrystalline BDD thin film on a flat substrate, such as a silicon wafer, using the chemical vapor deposition (CVD) method. However, processing a BDD electrode to form an arbitrary shape is difficult, and it has limited practical applications. In contrast, BDD powder (BDDP) emerges as a promising electrode material for the creation of flexible and inexpensive BDD electrodes; the electrode ink is either painted or printed onto various types of substrates. In addition, the BDDP can be used as an electrode material with a large specific surface area. In this chapter, the preparation of BDDP and its application to printed electrodes and as fuel cell catalyst support is described.

Keywords

Boron-doped diamond (BDD) powder Electrochemistry Cyclic voltammetry (CV) Screen-printed electrode Electrochemical detection Glucose sensor Polymer electrolyte fuel cell (PEFC) Cathode catalyst Platinum nanoparticle 

References

  1. 1.
    J.P. Lagrange, A. Deneuville, E. Gheeraert, Activation energy in low compensated homoepitaxial boron-doped diamond films1. Diam. Relat. Mater. 7(9), 1390–1393 (1998).  https://doi.org/10.1016/S0925-9635(98)00225-8CrossRefGoogle Scholar
  2. 2.
    Diamond Electrochemistry, ed. by A. Fujishima, Y. Einaga, T.N. Rao, D.A. Tryk (Elsevier-BKC, Tokyo, 2005)Google Scholar
  3. 3.
    R.G. Compton, J.S. Foord, F. Marken, Electroanalysis at diamond-like and doped-diamond electrodes. Electroanalysis 15(17), 1349–1363 (2003).  https://doi.org/10.1002/elan.200302830CrossRefGoogle Scholar
  4. 4.
    E.N. Christoph, R. Bohuslav, S. Dongchan, U. Hiroshi, Y. Nianjun, Diamond for bio-sensor applications. J. Phys. D 40(20), 6443 (2007).  https://doi.org/10.1088/0022-3727/40/20/S21CrossRefGoogle Scholar
  5. 5.
    Y. Zhou, J. Zhi, The application of boron-doped diamond electrodes in amperometric biosensors. Talanta 79(5), 1189–1196 (2009).  https://doi.org/10.1016/j.talanta.2009.05.026CrossRefGoogle Scholar
  6. 6.
    Y. Einaga, Diamond electrodes for electrochemical analysis. J. Appl. Electrochem. 40(10), 1807–1816 (2010).  https://doi.org/10.1007/s10800-010-0112-zCrossRefGoogle Scholar
  7. 7.
    M. Panizza, G. Cerisola, Application of diamond electrodes to electrochemical processes. Electrochim. Acta 51(2), 191–199 (2005).  https://doi.org/10.1016/j.electacta.2005.04.023CrossRefGoogle Scholar
  8. 8.
    M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109(12), 6541–6569 (2009).  https://doi.org/10.1021/cr9001319CrossRefGoogle Scholar
  9. 9.
    B. Marselli, J. Garcia-Gomez, P.-A. Michaud, M.A. Rodrigo, C. Comninellis, Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 150(3), D79–D83 (2003).  https://doi.org/10.1149/1.1553790CrossRefGoogle Scholar
  10. 10.
    T. Kondo, Y. Tamura, M. Hoshino, T. Watanabe, T. Aikawa, M. Yuasa, Y. Einaga, Direct determination of chemical oxygen demand by anodic decomposition of organic compounds at a diamond electrode. Anal. Chem. 86(16), 8066–8072 (2014).  https://doi.org/10.1021/ac500919kCrossRefGoogle Scholar
  11. 11.
    A. Kraft, M. Stadelmann, M. Wunsche, M. Blaschke, Electrochemical ozone production anodes and a solid polymer using diamond electrolyte. Electrochem. Commun. 8(5), 883–886 (2006).  https://doi.org/10.1016/j.elecom.2006.02.013CrossRefGoogle Scholar
  12. 12.
    T. Kondo, H. Sakamoto, T. Kato, M. Horitani, I. Shitanda, M. Itagaki, M. Yuasa, Screen-printed diamond electrode: a disposable sensitive electrochemical electrode. Electrochem. Commun. 13(12), 1546–1549 (2011).  https://doi.org/10.1016/j.elecom.2011.10.013CrossRefGoogle Scholar
  13. 13.
    T. Spătaru, T. Kondo, C. Anastasescu, I. Balint, P. Osiceanu, C. Munteanu, N. Spătaru, A. Fujishima, Silica veils-conductive diamond powder composite as a new propitious substrate for platinum electrocatalysts. J. Solid State Electrochem. 21(4), 1007–1014 (2017).  https://doi.org/10.1007/s10008-016-3454-6CrossRefGoogle Scholar
  14. 14.
    L. Preda, T. Kondo, T. Spataru, M. Marin, M. Radu, P. Osiceanu, A. Fujishima, N. Spataru, Enhanced activity for methanol oxidation of platinum particles supported on iridium oxide modified boron-doped diamond powder. ChemElectroChem 4(8), 1908–1915 (2017).  https://doi.org/10.1002/celc.201700155CrossRefGoogle Scholar
  15. 15.
    G.R. Salazar-Banda, K.I.B. Eguiluz, L.A. Avaca, Boron-doped diamond powder as catalyst support for fuel cell applications. Electrochem. Commun. 9(1), 59–64 (2007).  https://doi.org/10.1016/j.elecom.2006.08.038CrossRefGoogle Scholar
  16. 16.
    S. Heyer, W. Janssen, S. Turner, Y.-G. Lu, W.S. Yeap, J. Verbeeck, K. Haenen, A. Krueger, Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles. ACS Nano 8(6), 5757–5764 (2014).  https://doi.org/10.1021/nn500573xCrossRefGoogle Scholar
  17. 17.
    E.A. Ekimov, O.S. Kudryavtsev, A.A. Khomich, O.I. Lebedev, T.A. Dolenko, I.I. Vlasov, High-pressure synthesis of boron-doped ultrasmall diamonds from an organic compound. Adv. Mater. 27(37), 5518–5522 (2015).  https://doi.org/10.1002/adma.201502672CrossRefGoogle Scholar
  18. 18.
    A.E. Fischer, G.M. Swain, Preparation and characterization of boron-doped diamond powder—A possible dimensionally stable electrocatalyst support material. J. Electrochem. Soc. 152(9), B369–B375 (2005).  https://doi.org/10.1149/1.1984367CrossRefGoogle Scholar
  19. 19.
    A. Ay, V.M. Swope, G.M. Swain, The physicochemical and electrochemical properties of 100 and 500 nm diameter diamond powders coated with boron-doped nanocrystalline diamond. J. Electrochem. Soc. 155(10), B1013–B1022 (2008).  https://doi.org/10.1149/1.2958308CrossRefGoogle Scholar
  20. 20.
    S.A. Wring, J.P. Hart, B.J. Birch, Voltammetric behaviour of screen-printed carbon electrodes, chemically modified with selected mediators, and their application as sensors for the determination of reduced glutathione. Analyst 116(2), 123–129 (1991).  https://doi.org/10.1039/AN9911600123CrossRefGoogle Scholar
  21. 21.
    F. Darain, S.-U. Park, Y.-B. Shim, Disposable amperometric immunosensor system for rabbit IgG using a conducting polymer modified screen-printed electrode. Biosens. Bioelectron. 18(5), 773–780 (2003).  https://doi.org/10.1016/S0956-5663(03)00004-6CrossRefGoogle Scholar
  22. 22.
    J.P. Hart, A. Crew, E. Crouch, K.C. Honeychurch, R.M. Pemberton, Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses. Anal. Lett. 37(5), 789–830 (2004).  https://doi.org/10.1081/AL-120030682CrossRefGoogle Scholar
  23. 23.
    Y.-S. Song, G. Muthuraman, Y.-Z. Chen, C.-C. Lin, J.-M. Zen, Screen printed carbon electrode modified with poly(l-lactide) stabilized gold nanoparticles for sensitive as(iii) detection. Electroanalysis 18(18), 1763–1770 (2006).  https://doi.org/10.1002/elan.200603634CrossRefGoogle Scholar
  24. 24.
    M. Tudorache, C. Bala, Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Anal. Bioanal. Chem. 388(3), 565–578 (2007).  https://doi.org/10.1007/s00216-007-1293-0CrossRefGoogle Scholar
  25. 25.
    I. Shitanda, S. Takamatsu, K. Watanabe, M. Itagaki, Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds. Electrochim. Acta 54(21), 4933–4936 (2009).  https://doi.org/10.1016/j.electacta.2009.04.005CrossRefGoogle Scholar
  26. 26.
    M.I. Prodromidis, M.I. Karayannis, Enzyme based amperometric biosensors for food analysis. Electroanalysis 14(4), 241–261 (2002). https://doi.org/10.1002/1521-4109(200202)14:4<241::AID-ELAN241>3.0.CO;2-PCrossRefGoogle Scholar
  27. 27.
    M. Albareda-Sirvent, A. Merkoçi, S. Alegret, Configurations used in the design of screen-printed enzymatic biosensors. A review. Sens. Actuat. B 69(1), 153–163 (2000).  https://doi.org/10.1016/S0925-4005(00)00536-0CrossRefGoogle Scholar
  28. 28.
    W.-J. Guan, Y. Li, Y.-Q. Chen, X.-B. Zhang, G.-Q. Hu, Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosens. Bioelectron. 21(3), 508–512 (2005).  https://doi.org/10.1016/j.bios.2004.10.030CrossRefGoogle Scholar
  29. 29.
    A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108(7), 2482–2505 (2008).  https://doi.org/10.1021/cr068069yCrossRefGoogle Scholar
  30. 30.
    T. Kondo, M. Horitani, H. Sakamoto, I. Shitanda, Y. Hoshi, M. Itagaki, M. Yuasa, Screen-printed modified diamond electrode for glucose detection. Chem. Lett. 42(4), 352–354 (2013).  https://doi.org/10.1246/cl.121242CrossRefGoogle Scholar
  31. 31.
    L. Xiao, I. Streeter, G.G. Wildgoose, R.G. Compton, Fabricating random arrays of boron doped diamond nano-disc electrodes: Towards achieving maximum Faradaic current with minimum capacitive charging. Sens. Actuat. B 133(1), 118–127 (2008).  https://doi.org/10.1016/j.snb.2008.02.003CrossRefGoogle Scholar
  32. 32.
    S. Fletcher, M.D. Horne, Random assemblies of microelectrodes (RAM™ electrodes) for electrochemical studies. Electrochem. Commun. 1(10), 502–512 (1999).  https://doi.org/10.1016/S1388-2481(99)00100-9CrossRefGoogle Scholar
  33. 33.
    M. Lacroix, P. Bianco, E. Lojou, Modified random assembly of microelectrodes for the selective electrochemical detection of dopamine. Electroanalysis 11(14), 1068–1076 (1999). https://doi.org/10.1002/(SICI)1521-4109(199910)11:14<1068::AID-ELAN1068>3.0.CO;2-VCrossRefGoogle Scholar
  34. 34.
    E. Ilinoiu, F. Manea, P. Serra, R. Pode, Simultaneous/selective detection of dopamine and ascorbic acid at synthetic zeolite-modified/graphite-epoxy composite macro/quasi-microelectrodes. Sensors 13(6), 7296 (2013).  https://doi.org/10.3390/s130607296CrossRefGoogle Scholar
  35. 35.
    J. Hees, R. Hoffmann, A. Kriele, W. Smirnov, H. Obloh, K. Glorer, B. Raynor, R. Driad, N. Yang, O.A. Williams, C.E. Nebel, Nanocrystalline diamond nanoelectrode arrays and ensembles. ACS Nano 5(4), 3339–3346 (2011).  https://doi.org/10.1021/nn2005409CrossRefGoogle Scholar
  36. 36.
    T. Kondo, I. Udagawa, T. Aikawa, H. Sakamoto, I. Shitanda, Y. Hoshi, M. Itagaki, M. Yuasa, Enhanced sensitivity for electrochemical detection using screen-printed diamond electrodes via the random microelectrode array effect. Anal. Chem. 88(3), 1753–1759 (2016).  https://doi.org/10.1021/acs.analchem.5b03986CrossRefGoogle Scholar
  37. 37.
    B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345 (2001).  https://doi.org/10.1038/35104620CrossRefGoogle Scholar
  38. 38.
    O. Okada, K. Yokoyama, Development of polymer electrolyte fuel cell cogeneration systems for residential applications. Fuel Cells 1(1), 72–77 (2001).  https://doi.org/10.1002/1615-6854(200105)1:1%3c72:AID-FUCE72%3e3.0.CO;2-PCrossRefGoogle Scholar
  39. 39.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Cat. B 56(1), 9–35 (2005).  https://doi.org/10.1016/j.apcatb.2004.06.021CrossRefGoogle Scholar
  40. 40.
    R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells. Nature 443, 63 (2006).  https://doi.org/10.1038/nature05118CrossRefGoogle Scholar
  41. 41.
    M. Watanabe, D.A. Tryk, M. Wakisaka, H. Yano, H. Uchida, Overview of recent developments in oxygen reduction electrocatalysis. Electrochim. Acta 84 (Supplement C) 187–201 (2012).  https://doi.org/10.1016/j.electacta.2012.04.035
  42. 42.
    L.M. Roen, C.H. Paik, T.D. Jarvi, Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem. Solid-State Lett. 7(1), A19–A22 (2004).  https://doi.org/10.1149/1.1630412CrossRefGoogle Scholar
  43. 43.
    J.P. Meyers, R.M. Darling, Model of carbon corrosion in PEM fuel cells. J. Electrochem. Soc. 153(8), A1432–A1442 (2006).  https://doi.org/10.1149/1.2203811CrossRefGoogle Scholar
  44. 44.
    S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, Carbon support oxidation in PEM fuel cell cathodes. J. Power Source 176(2), 444–451 (2008).  https://doi.org/10.1016/j.jpowsour.2007.08.053CrossRefGoogle Scholar
  45. 45.
    F.A. de Bruijn, V.A.T. Dam, G.J.M. Janssen, Review: durability and degradation issues of pem fuel cell components. Fuel Cells 8(1), 3–22 (2008).  https://doi.org/10.1002/fuce.200700053CrossRefGoogle Scholar
  46. 46.
    T. Kondo, M. Kikuchi, H. Masuda, F. Katsumata, T. Aikawa, M. Yuasa, Boron-doped diamond powder as a durable support for platinum-based cathode catalysts in polymer electrolyte fuel cells. J. Electrochem. Soc. 165(6), F3072–F3077 (2018).  https://doi.org/10.1149/2.0111806jesCrossRefGoogle Scholar
  47. 47.
    H. Yano, M. Kataoka, H. Yamashita, H. Uchida, M. Watanabe, Oxygen reduction activity of carbon-supported Pt−M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 23(11), 6438–6445 (2007).  https://doi.org/10.1021/la070078uCrossRefGoogle Scholar
  48. 48.
    A. Ohma, K. Shinohara, A. Iiyama, T. Yoshida, A. Daimaru, Membrane and catalyst performance targets for automotive fuel cells by fccj membrane, catalyst. MEA WG. ECS Trans. 41(1), 775–784 (2011).  https://doi.org/10.1149/1.3635611CrossRefGoogle Scholar
  49. 49.
    T. Ochiai, S. Tago, M. Hayashi, K. Hirota, T. Kondo, K. Satomura, A. Fujishima, Boron-doped diamond powder (BDDP)-based polymer composites for dental treatment using flexible pinpoint electrolysis unit. Electrochem. Commun. 68, 49–53 (2016).  https://doi.org/10.1016/j.elecom.2016.04.011CrossRefGoogle Scholar
  50. 50.
    S. Nantaphol, R.B. Channon, T. Kondo, W. Siangproh, O. Chailapakul, C.S. Henry, Boron doped diamond paste electrodes for microfluidic paper-based analytical devices. Anal. Chem. 89(7), 4100–4107 (2017).  https://doi.org/10.1021/acs.analchem.6b05042CrossRefGoogle Scholar
  51. 51.
    S. Tago, T. Ochiai, S. Suzuki, M. Hayashi, T. Kondo, A. Fujishima, Flexible boron-doped diamond (bdd) electrodes for plant monitoring. Sensors 17(7), 1638 (2017).  https://doi.org/10.3390/s17071638CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pure and Applied Chemistry, Faculty of Science and TechnologyTokyo University of ScienceNodaJapan

Personalised recommendations