Advertisement

Surface Modifications of Nanodiamonds and Current Issues for Their Biomedical Applications

  • J. C. ArnaultEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

Combining numerous unique assets, nanodiamonds are promising nanoparticles for biomedical applications. The present chapter focuses on the current knowledge of their properties. It shows how the control of their surface chemistry governs their colloidal behavior. This allows a fine tuning of their surface charge. Developments of bioapplications using nanodiamonds are summarized and further promising challenges for biomedicine are discussed.

Keywords

Nanodiamonds Synthesis Surface chemistry Bioapplications 

Notes

Acknowledgements

J.C. Arnault would like to thank H. A. Girard, T. Petit, M. Kurzyp, C. Gesset, C. Sicard-Roselli, E. Brun and M. Mermoux for fruitful discussions. He also acknowledges the different coworkers which contribute to studies dealing with surface modified nanodiamonds. The author also thanks Professor E. Osawa for providing detonation nanodiamonds.

References

  1. 1.
    M.L. Etheridge, S.A. Campbell, A.G. Erdman, C.L. Haynes, S.M. Wolf, J. McCullough, The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed. Nanotechnol. Biol. Med. 9, 1–14 (2013).  https://doi.org/10.1016/j.nano.2012.05.013CrossRefGoogle Scholar
  2. 2.
    Y. Matsumura, H. Maeda, A New concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986) (WOS:A1986E976600069)Google Scholar
  3. 3.
    J.D. Byrne, T. Betancourt, L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 60, 1615–1626 (2008).  https://doi.org/10.1016/j.addr.2008.08.005CrossRefGoogle Scholar
  4. 4.
    E.V. Batrakova, A.V. Kabanov, Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 130, 98–106 (2008).  https://doi.org/10.1016/j.jconrel.2008.04.013CrossRefGoogle Scholar
  5. 5.
    X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).  https://doi.org/10.1126/science.1104274CrossRefGoogle Scholar
  6. 6.
    T.A. Taton, C.A. Mirkin, R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).  https://doi.org/10.1126/science.289.5485.1757CrossRefGoogle Scholar
  7. 7.
    H.B. Na, I.C. Song, T. Hyeon, Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21, 2133–2148 (2009).  https://doi.org/10.1002/adma.200802366CrossRefGoogle Scholar
  8. 8.
    D. Yoo, J.H. Lee, T.H. Shin, J. Cheon, Theranostic magnetic nanoparticles. Acc. Chem. Res. 44, 863–874 (2011).  https://doi.org/10.1021/ar200085cCrossRefGoogle Scholar
  9. 9.
    D. Georgin, B. Czarny, M. Botquin, M. Mayne-L’hermite, M. Pinault, B. Bouchet- Fabre, M. Carriere, J.L. Poncy, Q. Chau, R. Maximilien, V. Dive, F. Taran, Preparation of (14)C-labeled multiwalled carbon nanotubes for biodistribution investigations. J. Am. Chem. Soc. 131, 14658–14659 (2009).  https://doi.org/10.1021/ja906319z
  10. 10.
    C.S.S.R. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011).  https://doi.org/10.1016/j.addr.2011.03.008CrossRefGoogle Scholar
  11. 11.
    K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318–3323 (2010).  https://doi.org/10.1021/nl100996uCrossRefGoogle Scholar
  12. 12.
    K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33, 2206–2214 (2012).  https://doi.org/10.1016/j.biomaterials.2011.11.064CrossRefGoogle Scholar
  13. 13.
    P. Cherukuri, E.S. Glazer, S.A. Curley, Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev. 62, 339–345 (2010).  https://doi.org/10.1016/j.addr.2009.11.006CrossRefGoogle Scholar
  14. 14.
    J.F. Hainfeld, D.N. Slatkin, H.M. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, N309–N315 (2004).  https://doi.org/10.1088/0031-9155/49/18/N03CrossRefGoogle Scholar
  15. 15.
    E. Porcel, S. Liehn, H. Remita, N. Usami, K. Kobayashi, Y. Furusawa, C. Le Sech, S. Lacombe, Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21, 85103 (2010).  https://doi.org/10.1088/0957-4484/21/8/085103CrossRefGoogle Scholar
  16. 16.
    L. Maggiorella, G. Barouch, C. Devaux, A. Pottier, E. Deutsch, J. Bourhis, E. Borghi, L. Levy, Nanoscale radiotherapy with hafnium oxide nanoparticles. Futur. Oncol. 8, 1167–1181 (2012).  https://doi.org/10.2217/FON.12.96CrossRefGoogle Scholar
  17. 17.
    M.J. Sailor, J.H. Park, Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24, 3779–3802 (2012).  https://doi.org/10.1002/adma.201200653CrossRefGoogle Scholar
  18. 18.
    W.T. Al-Jamal, K. Kostarelos, Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res. 44, 1094–10104 (2011).  https://doi.org/10.1021/ar200105pCrossRefGoogle Scholar
  19. 19.
    M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, J.I. Zink, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, 889–896 (2008).  https://doi.org/10.1021/nn800072tCrossRefGoogle Scholar
  20. 20.
    G. Wu, A. Mikhailovsky, H.A. Khant, C. Fu, W. Chiu, J.A. Zasadzinski, Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J. Am. Chem. Soc. 130, 8175–8177 (2008).  https://doi.org/10.1021/ja802656dCrossRefGoogle Scholar
  21. 21.
    E. Perevedentseva, Y.C. Lin, M. Jani, C.L. Cheng, Biomedical applications of nanodiamonds in imaging and therapy. Nanomedecine 8, 2041–2060 (2013).  https://doi.org/10.2217/NNM.13.183CrossRefGoogle Scholar
  22. 22.
    O.A. Shenderova, G.E. McGuire, Science and engineering of nanodiamond particle surfaces for biological applications. Biointerphases 10(030802), 1–24 (2015).  https://doi.org/10.1116/1.4927679CrossRefGoogle Scholar
  23. 23.
    K. Turcheniuk, V.N. Mochalin, Biomedical applications of nanodiamond. Nanotechnology 28, 252001 (2017).  https://doi.org/10.1088/1361-6528/aa6ae4CrossRefGoogle Scholar
  24. 24.
    H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B. Itty Ipe, M.G. Bawendi, J.V. Frangioni, Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).  https://doi.org/10.1038/nbt1340CrossRefGoogle Scholar
  25. 25.
    V. Vyjayanthimala, Y.K. Tzeng, H.C. Chang, C.L. Li, The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20, 425103 (2009).  https://doi.org/10.1088/0957-4484/20/42/425103CrossRefGoogle Scholar
  26. 26.
    Y. Yuan, X. Wang, G. Jia, J.H. Liu, T. Wang, Y. Gu, S.T. Yang, S. Zhen, H. Wang, Y. Liu, Pulmonary toxicity and translocation of nanodiamonds in mice. Diam. Relat. Mater. 19, 291–299 (2010).  https://doi.org/10.1016/j.diamond.2009.11.022CrossRefGoogle Scholar
  27. 27.
    A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34, 18–74 (2009).  https://doi.org/10.1080/10408430902831987CrossRefGoogle Scholar
  28. 28.
    V. Paget, J.A. Sergent, R. Grall, S. Altmeyer-Morel, H.A. Girard, T. Petit, G. Gesset, M. Mermoux, P. Bergonzo, J.C. Arnault, S. Chevillard, Nanodiamonds are neither cytotoxic nor genotoxic on kidney, intestine, lung and liver human cell lines. Nanotoxicology.  https://doi.org/10.3109/17435390.2013.855828
  29. 29.
    H. Moche, V. Paget, D. Chevalier, E. Lorge, N. Claude, H.A. Girard, J.C. Arnault, S. Chevillard, F. Nesslany, Carboxylated nanodiamonds can be used as negative reference in in vitro nanogenotoxicity studies. J. Appl. Toxicol. 37, 954–961 (2017).  https://doi.org/10.1002/jat.3443CrossRefGoogle Scholar
  30. 30.
    B. Zhang, Y. Li, C.Y. Fang, C.C. Chang, C.S. Chen, Y.Y. Chen, H.C. Chang, Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. Small 5, 2716–2721 (2009).  https://doi.org/10.1002/smll.200900725CrossRefGoogle Scholar
  31. 31.
    A. Alhaddad, M.P. Adam, J. Botsoa, G. Dantelle, S. Perruchas, T. Gacoin, C. Mansuy, S. Lavielle, C. Malvy, F. Treussart, J.R. Bertrand, Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 7, 3087–3095 (2011).  https://doi.org/10.1002/smll.201101193CrossRefGoogle Scholar
  32. 32.
    A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Func. Mater. 22, 890–906 (2012).  https://doi.org/10.1002/adfm.201102670CrossRefGoogle Scholar
  33. 33.
    A. Alhaddad, C. Durieu, G. Dantelle, E. Le Cam, C. Malvy et al., Influence of the internalization pathway on the efficacy of siRNA delivery by cationic fluorescent nanodiamonds in the Ewing sarcoma cell model. PLoS ONE 7(12), e52207 (2012).  https://doi.org/10.1371/journal.pone.0052207CrossRefGoogle Scholar
  34. 34.
    J.R. Bertrand, C. Pioche-Durieu, J. Ayala, T. Petit, H.A. Girard, C. Malvy, E. Le Cam, F. Treussart, J.C. Arnault, Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. Biomaterials 45, 93–98 (2015).  https://doi.org/10.1016/j.biomaterials.2014.12.007CrossRefGoogle Scholar
  35. 35.
    K.K. Liu, W.W. Zheng, C.C. Wang, Y.C. Chiu, C.L. Cheng, Y.S. Lo, C. Chen, J.I. Chao, Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology 21, 315106 (2010).  https://doi.org/10.1088/0957-4484/21/31/315106CrossRefGoogle Scholar
  36. 36.
    E.K. Chow, X.Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, D. Ho, Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21(2011).  https://doi.org/10.1126/scitranslmed.3001713
  37. 37.
    J. Li, Y. Zhu, W. Li, X. Zhang, P. Peng, Q. Huang, Nanodiamonds as intracellular transporters of chemotherapeutic drug. Biomaterials 31, 8410–8418 (2010).  https://doi.org/10.1016/j.biomaterials.2010.07.058CrossRefGoogle Scholar
  38. 38.
    L. Moore, V. Grobarova, H. Shen, H.B. Man, J. Mičova, M. Ledvina, J. Štursa, M. Nesladek, A. Fišerova, D. Ho, Comprehensive Interrogation of the Cellular Response to Fluorescent. Detonation and Functionalized Nanodiamonds. Nanoscale 6, 11712–11721 (2014).  https://doi.org/10.1039/c4nr02570aCrossRefGoogle Scholar
  39. 39.
    D. Ho, A. Zappinpar, E.K. Chow, Diamonds, digital health, and drug development: optimizing combinatorial nanomedicine. ACS Nano 10, 9087–9092 (2016).  https://doi.org/10.1021/acsnano.6b06174CrossRefGoogle Scholar
  40. 40.
    Y.R. Chang, H.Y. Lee, K. Chen, C.C. Chang, D.S. Tsai, C.C. Fu, T.S. Lim, Y.K. Tzeng, C.Y. Fang, C.C. Han, H.C. Chang, W. Fann, Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotech. 3, 284–288 (2008).  https://doi.org/10.1038/nnano.2008.99CrossRefGoogle Scholar
  41. 41.
    J.I. Chao, E. Perevedentseva, P.H. Chung, K.K. Liu, C.Y. Cheng, C.C. Chang, C.L. Cheng, Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 93, 2199–2208 (2007).  https://doi.org/10.1529/biophysj.107.108134CrossRefGoogle Scholar
  42. 42.
    Y.Y. Hui, W. Wei-Wen Hsiao, S. Haziza, M. Simonneau, F. Treussart, H.C. Chang, Single particle tracking of fluorescent nanodiamonds in cells and organisms. Curr. Opin. Solid State Mater. Sci. 21, 35–42 (2016).  https://doi.org/10.1016/j.cossms.2016.04.002CrossRefGoogle Scholar
  43. 43.
    R. Grall, H.A. Girard, L. Saad, T. Petit, C. Gesset, M. Combis-Schlumberger, V. Paget, J. Delic, J.C. Arnault, S. Chevillard, Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials 61, 290–298 (2015).  https://doi.org/10.1016/j.biomaterials.2015.05.034CrossRefGoogle Scholar
  44. 44.
    M. Kurzyp, H.A. Girard, Y. Cheref, E. Brun, C. Sicard-Roselli, S. Saada, J.C. Arnault, Hydroxyl radical production induced by plasma hydrogenated nanodiamonds under X-ray irradiation. Chem. Commun. 53, 1237–1240 (2017).  https://doi.org/10.1039/c6cc08895cCrossRefGoogle Scholar
  45. 45.
    J.C. Arnault (ed.), Nanodiamonds: Advanced Material Analysis, Properties and Applications (Elsevier, 2017). ISBN: 978-0-323-43029-6Google Scholar
  46. 46.
    F.P. Bundy, W.A. Bassett, M.S. Weathers, R.J. Hemley, H.K. Mao, A.F. Goncharov, The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).  https://doi.org/10.1016/0008-6223(96)00170-4CrossRefGoogle Scholar
  47. 47.
    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nature Nanotech. 7, 11–23 (2012).  https://doi.org/10.1038/NNANO.2011.209CrossRefGoogle Scholar
  48. 48.
    F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Man-Made Diamonds. Nature 176, 51–55 (1955).  https://doi.org/10.1038/176051a0CrossRefGoogle Scholar
  49. 49.
    J.C. Angus, C.C. Hayman, Low-pressure, metastable growth of diamond and “diamondlike” phases. Science 241, 913–921 (1988).  https://doi.org/10.1126/science.241.4868.913CrossRefGoogle Scholar
  50. 50.
    G.W. Yang, J.B. Wang, Q.X. Liu, Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys.: Condens. Matter 10, 7923–7928 (1998).  https://doi.org/10.1088/0953-8984/10/35/024CrossRefGoogle Scholar
  51. 51.
    J. Sun, S.L. Hu, X.W. Du, Y.W. Lei, Ultrafine diamond synthesized by long-pulse-width laser. Appl. Phys. Lett. 89, 183115 (2006).  https://doi.org/10.1063/1.2385210CrossRefGoogle Scholar
  52. 52.
    J.P. Boudou, P.A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel, E. Gaffet, High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009).  https://doi.org/10.1088/0957-4484/20/35/359801CrossRefGoogle Scholar
  53. 53.
    J.P. Boudou, J. Tisler, R. Reuter, A. Thorel, P.A. Curmi, F. Jelezko, J. Wrachtrup, Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm. Diam. Relat. Mater. 37, 80–86 (2013).  https://doi.org/10.1016/j.diamond.2013.05.006CrossRefGoogle Scholar
  54. 54.
    E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, C. Becher, Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films. Appl. Phys. Lett. 98, 243107 (2011).  https://doi.org/10.1063/1.3599608CrossRefGoogle Scholar
  55. 55.
    S. Heyer, W. Janssen, S. Turner, Y.G. Lu, W.S. Yeap, J. Verbeeck, K. Haenen, A. Krueger, Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles. ACS Nano 8, 5757 (2014).  https://doi.org/10.1021/nn500573xCrossRefGoogle Scholar
  56. 56.
    V. Danilenko, O. Shenderova, Advances in synthesis of nanodiamond particles, in Ultrananocrystalline Diamond: synthesis, properties and applications, 2nd edn., by O. Shenderova, D.M. Gruen (Elsevier, 2012)Google Scholar
  57. 57.
    V.Y. Dolmatov, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ. Chem. Rev. 76, 339–360 (2007) (WOS:000247118100004)Google Scholar
  58. 58.
    O. Shenderova, A. Koscheev, N. Zaripov, I. Petrov, Y. Skryabin, P. Detkov, T. Turner, G. Van Tendeloo, Surface chemistry and properties of ozone-purified detonation nanodiamonds. J. Phys. Chem. C 115, 9827–9837 (2011).  https://doi.org/10.1021/jp1102466CrossRefGoogle Scholar
  59. 59.
    B. Zousman, O. Levinson, Pure nanodiamonds produced by laser-assisted technique, in RSC Nanoscience and Nanotechnology, vol. 31, ed. by O.A. Williams (2014), pp. 112–127Google Scholar
  60. 60.
    J.E. Dahl, S.G. Liu, R.M.K. Carlson, Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299, 96–102 (2003).  https://doi.org/10.1126/science.1078239CrossRefGoogle Scholar
  61. 61.
    O.O. Mykhaylyk, Y.M. Solonin, D.N. Batchelder, R. Brydson, Transformation of nanodiamond into carbon onions: A comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, x-ray diffraction, small-angle x-ray scattering, and ultraviolet Raman spectroscopy. J. Appl. Phys. 97, 074302 (2005).  https://doi.org/10.1063/1.1868054CrossRefGoogle Scholar
  62. 62.
    E. Osawa, D. Ho, Nanodiamond and its application to drug delivery. J. Med. Allied. Sci. 2, 31–40 (2012) (P r i n t I S S N: 2 2 3 1 1 6 9 6 O n l i n e I S S N: 2 2 3 1 1 7 0 X)Google Scholar
  63. 63.
    A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17, 4811–4819 (2007).  https://doi.org/10.1039/b710189aCrossRefGoogle Scholar
  64. 64.
    S. Turner, O.I. Lebedev, O. Shenderova, I.I. Vlasov, J. Verbeeck, G. Van Tendeloo, Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Adv. Funct. Mater. 19, 2116–2124 (2009)CrossRefGoogle Scholar
  65. 65.
    D.C. Bell, C.J. Russo, D.V. Kolmykov, 40 keV atomic resolution TEM. Ultramicroscopy 114, 38–45 (2012).  https://doi.org/10.1016/j.ultramic.2011.12.001CrossRefGoogle Scholar
  66. 66.
    B. Palosz, S. Stelmakh, E. Grzanka, S. Gierlotka, W. Palosz, Application of apparent lattice parameter to determination of core-shell structure of nanocrystals. Z. Kristallogr. 222, 580–594 (2007).  https://doi.org/10.1524/zkri.2007.222.11.580CrossRefGoogle Scholar
  67. 67.
    V.L. Kuznetsov, M.N. Aleksandrov, I.V. Zagoruiko, A.L. Chuvilin, E.M. Moroz, V.N. Kolomiichuk, V.A. Lizholobov, P.M. Brylyakov, G.V. Sakovitch, Study of ultradispersed diamond powders obtained using explosion energy. Carbon 29, 665–668 (1991).  https://doi.org/10.1016/0008-6223(91)90135-6CrossRefGoogle Scholar
  68. 68.
    T. Petit, J.C. Arnault, H.A. Girard, M. Sennour, P. Bergonzo, Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy. Phys. Rev. B 84, 233407 (2011).  https://doi.org/10.1103/PhysRevB.84.233407CrossRefGoogle Scholar
  69. 69.
    J.C. Arnault, X-ray photoemission spectroscopy applied to nanodiamonds: From surface chemistry to in situ reactivity Diam. Relat. Mater. 84, 157–168 (2018)  https://doi.org/10.1016/j.diamond.2018.03.015
  70. 70.
    D. Ballutaud, F. Jomard, T. Kociniewski, E. Rzepka, H.A. Girard, S. Saada, Sp(3)/sp(2) character of the carbon and hydrogen configuration in micro- and nanocrystalline diamond Diam. Relat. Mater. 17, 451–456 (2008).  https://doi.org/10.1016/j.diamond.2007.10.004CrossRefGoogle Scholar
  71. 71.
    B.R. Smith, D. Inglis, B. Sandnes, J. Rabeau, A.V. Zvyagin, D. Gruber, C.J. Noble, R. Vogel, E. Osawa, T. Plakhotnik, Five-nanometer diamond with luminescent nitrogen-vacancy defect centers. Small 5, 1649–1653 (2009).  https://doi.org/10.1002/smll.200801802CrossRefGoogle Scholar
  72. 72.
    A.V. Fionov, A. Lund, W.M. Chen, N.N. Rozhkova, I.A. Buyanova, G.I. Emel’yanova, L.E. Gorlenko, E.V. Golubina, E.S. Lokteva, E. Osawa, V.V. Lunin, Paramagnetic centers in detonation nanodiamonds studied by CW and pulse EPR. Chem. Phys. Lett. 493, 319–322 (2010).  https://doi.org/10.1016/j.cplett.2010.05.050
  73. 73.
    J.H.N. Loubser, J.A. Van Wyk, Electron spin resonance in the study of diamond. Rep. Progr. Phys. 41, 1201–1248 (1978).  https://doi.org/10.1088/0034-4885/41/8/002CrossRefGoogle Scholar
  74. 74.
    V. Pichot, O. Stephan, M. Comet, E. Fousson, J. Mory, K. March, D. Spitzer, High nitrogen doping of detonation nanodiamonds. J. Phys. Chem. C 114, 10082–10087 (2010).  https://doi.org/10.1021/jp9121485CrossRefGoogle Scholar
  75. 75.
    Y.G. Lu, S. Turner, J. Verbeeck, S.D. Janssens, P. Wagner, K. Haenen, G. Van Tendeloo, Direct visualization of boron dopant distribution and coordination in individual chemical vapor deposition nanocrystalline B-doped diamond grains. Appl. Phys. Letters 101, 041907 (2012).  https://doi.org/10.1063/1.4738885CrossRefGoogle Scholar
  76. 76.
    S. Turner, Y.G. Lu, S.D. Janssens, F. Da Pieve, D. Lamoen, J. Verbeeck, K. Haenen, P. Wagner, G. Van Tendeloo, Local boron environment in B-doped nanocrystalline diamond films. Nanoscale 4, 5960–5964 (2012).  https://doi.org/10.1039/c2nr31530kCrossRefGoogle Scholar
  77. 77.
    A.V. Kvit, V.V. Zhirnov, T. Tyler, J.J. Hren, Aging effect and nitrogen distribution in diamond nanoparticles. Comput. Part B Eng. 35, 163–166 (2004).  https://doi.org/10.1016/j.compositesb.2003.08.003CrossRefGoogle Scholar
  78. 78.
    I.I. Vlasov, Hydrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition. Adv. Mater. 19, 4058–4062 (2007).  https://doi.org/10.1002/adma.200700442CrossRefGoogle Scholar
  79. 79.
    O.A. Shenderova, I.I. Vlasov, S. Turner, G. Van Tendeloo, S.B. Orlinskii, A.A. Shiryaev, A.A. Khomich, S.N. Sulyanov, F. Jelezko, J. Wrachtrup, Nitrogen control in nanodiamond produced by detonation shock-wave-assisted synthesis. J. Phys. Chem. C 115, 14014–14024 (2011).  https://doi.org/10.1021/jp202057qCrossRefGoogle Scholar
  80. 80.
    T. Berg, E. Marosits, J. Maul, P. Nagel, U. Ott, F. Schertz, S. Schuppler, C. Sudek, G. Schonhense, Quantum confinement observed in the x-ray absorption spectrum of size distributed meteoritic nanodiamonds. J. Appl. Phys. 104, 064303 (2008).  https://doi.org/10.1063/1.2978217CrossRefGoogle Scholar
  81. 81.
    A.M. Panich, Nuclear magnetic resonance studies of nanodiamonds. Crit. Rev. Solid State Mater. Sci. 37, 276–303 (2012).  https://doi.org/10.1080/10408436.2011.606930CrossRefGoogle Scholar
  82. 82.
    P.N. Nesterenko, D. Mitev, B. Paull, Elemental analysis of nanodiamonds by inductively coupled plasma hyphenated methods, in Nanodiamonds: Advanced Material Analysis, Properties and Applications, ed. by J.C. Arnault (Elsevier, 2017). ISBN: 978-0-323-43029-6Google Scholar
  83. 83.
    C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, J. Twamley, L.J. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau, Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotech. 5, 345–349 (2010).  https://doi.org/10.1038/NNANO.2010.56CrossRefGoogle Scholar
  84. 84.
    A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A. Ya, A. Vul, E. Osawa, Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon 43, 1722–1730 (2005).  https://doi.org/10.1016/j.carbon.2005.02.020CrossRefGoogle Scholar
  85. 85.
    J.C. Arnault, T. Petit, H.A. Girard, A. Chavanne, C. Gesset, M. Sennour, M. Chaigneau, Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma. Phys. Chem. Chem. Phys. 13, 11481 (2011).  https://doi.org/10.1039/c1cp20109cCrossRefGoogle Scholar
  86. 86.
    M. Mermoux, B. Marcus, G.M. Swain, J.E. Butler, A confocal raman imaging study of an optically transparent boron-doped diamond electrode. J. Phys. Chem. B 106, 10816–10827 (2002).  https://doi.org/10.1021/jp0202946CrossRefGoogle Scholar
  87. 87.
    S. Osswald, V.N. Mochalin, M. Havel, G. Yushin, Y. Gogotsi, Phonon confinement effects in the Raman spectrum of nanodiamond. Phys. Rev. B 80, 075419 (2009).  https://doi.org/10.1103/PhysRevB.80.075419CrossRefGoogle Scholar
  88. 88.
    M. Mermoux, A. Crisci, T. Petit, H.A. Girard, J.C. Arnault, Surface modifications of detonation nanodiamonds probed by multiwavelength Raman spectroscopy. J. Phys. Chem. C 118, 23415–23425 (2014).  https://doi.org/10.1021/jp507377zCrossRefGoogle Scholar
  89. 89.
    D.R. Baer, M.H. Engelhard, XPS analysis of nanostructured materials and biological surfaces. J. Electron Spectrosc. Relat. Phenom. 178–179: 415–432 (2010).  https://doi.org/10.1016/j.elspec.2009.09.003
  90. 90.
    T. Petit, J.C. Arnault, H.A. Girard, M. Sennour, T.Y. Kang, C.L. Cheng, P. Bergonzo, Oxygen hole doping of nanodiamond. Nanoscale 4, 6792 (2012).  https://doi.org/10.1039/c2nr31655bCrossRefGoogle Scholar
  91. 91.
    S. Michaelson, A. Stacey, R. Akhvlediani, S. Prawer, A. Hoffman, High resolution electron energy loss spectroscopy surface studies of hydrogenated detonation nano-diamond spray-deposited films. Surf. Sci. 604, 1326–1330 (2010).  https://doi.org/10.1016/j.susc.2010.04.022CrossRefGoogle Scholar
  92. 92.
    S.L.Y. Chang, C. Dwyer, E. Osawa, A.S. Barnard, Size dependent reconstruction in detonation nanodiamonds. Nanoscale Horizons (2017).  https://doi.org/10.1039/c7nh00125h
  93. 93.
    T Petit, L Puskar, FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diam. Relat. Mater. 89, 52–66.  https://doi.org/10.1016/j.diamond.2018.08.005
  94. 94.
    C.L. Cheng, C.F. Chen, W.C. Shaio, D.S. Tsai, K.H. Chen, The CH stretching features on diamonds of different origins. Diam. Relat. Mater. 14, 1455–1462 (2005).  https://doi.org/10.1016/j.diamond.2005.03.003CrossRefGoogle Scholar
  95. 95.
    P.H. Chung, E. Perevedentseva, J.S. Tu, C.C. Chang, C.L. Cheng, Spectroscopic study of bio-functionalized nanodiamonds. Diam. Relat. Mater. 15, 622–625 (2006).  https://doi.org/10.1016/j.diamond.2005.11.019CrossRefGoogle Scholar
  96. 96.
    Z. Remes, H. Kozak, B. Rezek, E. Ukraintsev, O. Babchenko, A. Kromka, H.A. Girard, J.C. Arnault, P. Bergonzo, Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles. Appl. Surf. Sci. 270, 411–417 (2013).  https://doi.org/10.1016/j.apsusc.2013.01.039CrossRefGoogle Scholar
  97. 97.
    S. Ghodbane, A. Deneuville, D. Tromson, P. Bergonzo, E. Bustarret, D. Ballutaud, Sensitivity of Raman spectra excited at 325 nm to surface treatments of undoped polycrystalline diamond films. Phys. Status Solidi (a) 203, 2397–2402 (2006).  https://doi.org/10.1002/pssa.200521462
  98. 98.
    A. Crisci, M. Mermoux, B. Saubat-Marcus, Deep ultra-violet Raman imaging of CVD boron-doped and non-doped diamond films. Diam. Relat. Mater. 17, 1207–1211 (2008).  https://doi.org/10.1016/j.diamond.2008.01.025CrossRefGoogle Scholar
  99. 99.
    F. Cataldo, A. Koscheev, A study of the action of ozone and on the thermal stability of nanodiamond. Fuller. Nanotub. Carbon Nanostructures 11, 201 (2003).  https://doi.org/10.1081/FST-120024039CrossRefGoogle Scholar
  100. 100.
    A. Koshcheev, Thermodesorption mass spectrometry in the light of solution of the problem of certification and unification of the surface properties of detonation nano-diamonds. Russ. J. Gener. Chem. 79, 2033–2044 (2009).  https://doi.org/10.1134/S1070363209090357CrossRefGoogle Scholar
  101. 101.
    A. Krueger, M. Ozawa, G. Jarre, Y. Liang, J. Stegk, L. Lu, Deagglomeration and functionalisation of detonation diamond. Phys. Status Solidi (a) 204, 2881–2887 (2007).  https://doi.org/10.1002/pssa.200776330CrossRefGoogle Scholar
  102. 102.
    A.E. Aleksenskiy, E.D. Eydelman, A.Y. Vul, Deagglomeration of detonation nanodiamonds. Nanosci. Nanotechnol. Lett. 3, 68–74 (2011).  https://doi.org/10.1166/nnl.2011.1122CrossRefGoogle Scholar
  103. 103.
    T. Petit, H.A. Girard, A. Trouve, I. Batonneau-Genner, P. Bergonzo, J.C. Arnault, Surface transfer doping can mediate both colloidal stability and self-assembly of nanodiamonds. Nanoscale 5, 8958–8962 (2013).  https://doi.org/10.1039/c3nr02492jCrossRefGoogle Scholar
  104. 104.
    H.A. Girard, J.C. Arnault, S. Perruchas, S. Saada, T. Gacoin, J.P. Boilot, P. Bergonzo, Hydrogenation of nanodiamonds using MPCVD: A new route toward organic functionalization. Diam. Relat. Mater. 19, 1117–1123 (2010).  https://doi.org/10.1016/j.diamond.2010.03.019CrossRefGoogle Scholar
  105. 105.
    O.A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste, C.E. Nebel, Size-dependent reactivity of diamond nanoparticles. ACS Nano 4, 4824–4830 (2010).  https://doi.org/10.1021/nn100748kCrossRefGoogle Scholar
  106. 106.
    A.I. Ahmed, S. Mandal, L. Gines, O.A. Williams, C.L. Cheng, Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon 110, 438–442 (2016).  https://doi.org/10.1016/j.carbon.2016.09.019CrossRefGoogle Scholar
  107. 107.
    S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006).  https://doi.org/10.1021/ja063303nCrossRefGoogle Scholar
  108. 108.
    A. Krueger, The structure and reactivity of nanoscale diamond. J. Mater. Chem. 18, 1485–1492 (2008).  https://doi.org/10.1039/b716673g
  109. 109.
    A. Krüger, Y. Liang, G. Jarre, J. Stegk, Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 16, 2322–2328 (2006).  https://doi.org/10.1039/b601325bCrossRefGoogle Scholar
  110. 110.
    R. Martin, P.C. Heydorn, M. Alvaro, H. Garcia, General strategy for high-density covalent functionalization of diamond nanoparticles using fenton chemistry. Chem. Mater. 21, 4505–4514 (2009).  https://doi.org/10.1021/cm9012602CrossRefGoogle Scholar
  111. 111.
    H.A. Girard, T. Petit, S. Perruchas, J.C. Arnault, P. Bergonzo, Surface properties of hydrogenated nanodiamonds: a chemical investigation. Phys. Chem. Chem. Phys. 13, 11511–11516 (2011).  https://doi.org/10.1039/c1cp20424fCrossRefGoogle Scholar
  112. 112.
    V.N. Mochalin, S. Osswald, C. Portet, G. Yushin, C. Hobson, M. Havel, Gogotsi Y high temperature functionalization and surface modification of nanodiamond powders. MRS Proc. 1039, 201–211 (2007).  https://doi.org/10.1557/PROC-1039-P11-03CrossRefGoogle Scholar
  113. 113.
    M.A. Ray, T. Tyler, B. Hook, A. Martin, G. Cunningham, O. Shenderova, J.L. Davidson, M. Howell, W.P. Kang, G. McGuire, Cool plasma functionalization of nano-crystalline diamond films. Diam. Relat. Mater. 16, 2087–2089 (2007).  https://doi.org/10.1016/j.diamond.2007.07.016CrossRefGoogle Scholar
  114. 114.
    J. Havlik, H. Raabova, M. Gulka, V. Petrakova, M. Krecmarova, V. Masek, P. Lousa, J. Stursa, G. BoyenH, M. Nesladek, P. Cigler, Benchtop fluorination of fluorescent nanodiamonds on a preparative scale: toward unusually hydrophilic bright particles. Adv. Funct. Mater. 26, 4134–4142 (2017).  https://doi.org/10.1002/adfm.201504857CrossRefGoogle Scholar
  115. 115.
    K.I. Sotowa, T. Amamoto, A. Sobana, K. Kusakabe, T. Imato, Effect of treatment temperature on the amination of chlorinated diamond. Diam. Relat. Mater. 13, 145–150 (2004).  https://doi.org/10.1016/j.diamond.2003.10.029CrossRefGoogle Scholar
  116. 116.
    W.S. Yeap, S. Chen, K.P. Loh, Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. Langmuir 25, 185–191 (2009).  https://doi.org/10.1021/la8029787CrossRefGoogle Scholar
  117. 117.
    L.C.L. Huang, H.C. Chang, Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20, 5879–5884 (2004).  https://doi.org/10.1021/la0495736CrossRefGoogle Scholar
  118. 118.
    Y. Liang, T. Meinhardt, G. Jarre, M. Ozawa, P. Vrdoljak, A. Schöll, F. Reinert, A. Krueger, Deagglomeration and surface modification of thermally annealed nanoscale diamond. J. Colloid Interface Sci. 354, 23–30 (2011).  https://doi.org/10.1016/j.jcis.2010.10.044CrossRefGoogle Scholar
  119. 119.
    J. Chen, S.Z. Deng, J. Chen, Z.X. Yu, N.S. Xu, Graphitization of nanodiamond powder annealed in argon ambient. Appl. Phys. Lett. 74, 3651 (1999).  https://doi.org/10.1063/1.123211CrossRefGoogle Scholar
  120. 120.
    Y. Liang, M. Ozawa, A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3, 2288–2296 (2009).  https://doi.org/10.1021/nn900339sCrossRefGoogle Scholar
  121. 121.
    J.B. Cui, J. Ristein, L. Ley, Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys. Rev. Lett. 81, 429–432 (1998).  https://doi.org/10.1103/PhysRevLett.81.429CrossRefGoogle Scholar
  122. 122.
    L. Ley, J. Ristein, F. Meier, M. Riedel, P. Strobel, Surface conductivity of the diamond: a novel transfer doping mechanism. Phys. B 376, 262–267 (2006).  https://doi.org/10.1016/j.physb.2005.12.068
  123. 123.
    J.C. Arnault, H.A. Girard, Hydrogenated nanodiamonds: synthesis and surface properties Curr. Opin. Solid State Mater. Sci. 21, 10–16 (2017).  https://doi.org/10.1016/j.cossms.2016.06.007CrossRefGoogle Scholar
  124. 124.
    B.V. Spitsyn, S.A. Denisov, N.A. Skorik, A.G. Chopurova, S.A. Parkaeva, L.D. Belyakova, O.G. Larionov, The physical-chemical study of detonation nanodiamond application in adsorption and chromatography. Diam. Relat. Mater. 19, 123–127 (2010).  https://doi.org/10.1016/j.diamond.2009.10.020CrossRefGoogle Scholar
  125. 125.
    S. Ida, T. Tsubota, O. Hirabayashi, M. Nagata, Y. Matsumoto, A. Fujishima, Chemical reaction of hydrogenated diamond surface with peroxide radical initiators. Diam. Relat. Mater. 12, 601–605 (2003).  https://doi.org/10.1016/S0925-9635(02)00334-5CrossRefGoogle Scholar
  126. 126.
    I.I. Obraztsova, N.K. Eremenko, Physicochemical modification of nanodiamonds. Russ. J. Appl. Chem. 81, 603–608 (2008).  https://doi.org/10.1134/S107042720804006XCrossRefGoogle Scholar
  127. 127.
    M.B. Smith, J. March, March’s Advanced Organic Chemistry, 6th edn. (Wiley, Hoboken, 2007)Google Scholar
  128. 128.
    D Ager, Hydrogenation of carbon-carbon double bonds in Science of Synthesis, Stereoselective Synthesis, vol. 1 ed. by J.G. De Vries, G.A. Molander, P.A. Evans (2011), pp. 185–256Google Scholar
  129. 129.
    M. Yeganeh, P. Coxon, A. Brieva, V. Dhanak, L. Šiller, Y. Butenko, Atomic hydrogen treatment of nanodiamond powder studied with photoemission spectroscopy. Phys. Rev. B 75, 1–8 (2007).  https://doi.org/10.1103/PhysRevB.75.155404CrossRefGoogle Scholar
  130. 130.
    J. Angus, H.A. Will, W.S. Stanko, Growth of diamond seed crystals by vapor deposition. J. Appl. Phys. 39, 2915–2922 (1968).  https://doi.org/10.1063/1.1656693CrossRefGoogle Scholar
  131. 131.
    E. Van Hove, J. De Sanoit, J.C. Arnault, S. Saada, C. Mer, P. Mailley, P. Bergonzo, M. Nesladek, Stability of H-terminated BDD electrodes: an insight into the influence of the surface preparation. Phys. Status Solidi (a) 204, 2931–2939 (2007).  https://doi.org/10.1002/pssa.200776340CrossRefGoogle Scholar
  132. 132.
    R. Kiran, E. Scorsone, J. De Sanoit, J.C. Arnault, P. Mailley, P. Bergonzo, Boron doped diamond electrodes for direct measurement in biological fluids: an in situ regeneration approach. J. Electrochem. Soc. 160, H67–H73 (2013).  https://doi.org/10.1149/2.014302jesCrossRefGoogle Scholar
  133. 133.
    W.S. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J. Gerbi, D.M. Gruen, T. Knickerbocker, T.L. Lasseter, J.N. Russell, L.M. Smith, R.J. Hamers, DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 1, 253–257 (2002).  https://doi.org/10.1038/nmat779CrossRefGoogle Scholar
  134. 134.
    T. Strother, T. Knickerbocker, J. Russell, J. Butler, L. Smith, R. Hamers, Photochemical functionalization of diamond films. Langmuir 18, 968–971 (2002).  https://doi.org/10.1021/la0112561CrossRefGoogle Scholar
  135. 135.
    A. Hartl, E. Schmich, J.A. Garrido, J. Hernando, S.C.R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmuller, M. Stutzmann, Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat. Mater. 3, 736–742 (2004).  https://doi.org/10.1038/nmat1204CrossRefGoogle Scholar
  136. 136.
    Y. Zhong, K. Loh, The chemistry of C-H bond activation on diamond. Chem.–Asian J. 5, 1532–1540 (2010).  https://doi.org/10.1002/asia.201000027
  137. 137.
    S. Szunerits, R. Boukherroub, Different strategies for functionalization of diamond surfaces. J. Solid State Electrochem. 12, 1205–1218 (2008).  https://doi.org/10.1007/s10008-007-0473-3CrossRefGoogle Scholar
  138. 138.
    F. Maier, M. Riedel, B. Mantel, J. Ristein, L. Ley, Origin of surface conductivity in diamond. Phys. Rev. Lett. 85, 3472–3475 (2000).  https://doi.org/10.1103/PhysRevLett.85.3472CrossRefGoogle Scholar
  139. 139.
    C. Bandis, B.B. Pate, electron-emission due to exciton breakup from negative electron-affinity diamond. Phys. Rev. Lett. 74, 777–780 (1995).  https://doi.org/10.1103/PhysRevLett.74.777CrossRefGoogle Scholar
  140. 140.
    B.M. Nichols, J.E. Butler, J.N. Russell, R.J. Hamers, Photochemical functionalization of hydrogen-terminated diamond surfaces: a structural and mechanistic study. J. Phys. Chem. B 109, 20938–20947 (2005).  https://doi.org/10.1021/jp0545389CrossRefGoogle Scholar
  141. 141.
    D. Shin, B. Rezek, N. Tokuda, D. Takeuchi, H. Watanabe, T. Nakamura, T. Yamamoto, C.E. Nebel, Photo- and electrochemical bonding of DNA to single crystalline CVD diamond. Phys. Status Solidi A 203, 3245–3272 (2006).  https://doi.org/10.1002/pssa.200671402CrossRefGoogle Scholar
  142. 142.
    S. Lud, M. Steenackers, R. Jordan, P. Bruno, D. Gruen, P. Feulner, J. Garrido, M. Stutzmann, Chemical grafting of biphenyl self-assembled monolayers on ultrananocrystalline diamond. J. Am. Chem. Soc. 128, 16884–16891 (2006).  https://doi.org/10.1021/ja0657049CrossRefGoogle Scholar
  143. 143.
    A. Bolker, C. Saguy, R. Kalish, Transfer doping of single isolated nanodiamonds, studied by scanning probe micros copy techniques. Nanotechnology 25(385702), 1–7 (2014).  https://doi.org/10.1088/0957-4484/25/38/385702CrossRefGoogle Scholar
  144. 144.
    Y.V. Butenko, V.L. Kuznetsov, E.A. Paukshtis, A.I. Stadnichenko, I.N. Mazov, S.I. Moseenkov, A.I. Boronin, S.V. Kosheev, The thermal stability of nanodiamond surface groups and onset of nanodiamond graphitization. Fuller. Nanotub. Carbon Nanostructures 14, 557–564 (2006).  https://doi.org/10.1080/15363830600666779CrossRefGoogle Scholar
  145. 145.
    L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, P. Bergonzo, S. Perruchas, T. Gacoin, M. Chaigneau, H.C. Chang, V. Jacques, J.F. Roch, Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys. Rev. B 82, 115449 (2010).  https://doi.org/10.1103/PhysRevB.82.115449CrossRefGoogle Scholar
  146. 146.
    O. Shenderova, I. Petrov, J. Walsh, V. Grichko, T. Tyler, G. Cunningham, Modification of detonation nanodiamonds by heat treatment in air. Diam. Relat. Mater. 15, 1799–1803 (2006).  https://doi.org/10.1016/j.diamond.2006.08.032CrossRefGoogle Scholar
  147. 147.
    D. Mitev, R. Dimitrova, M. Spassova, C. Minchev, S. Stavrev, Surface peculiarities of detonation nanodiamonds in dependence of fabrication and purification methods. Diam. Relat. Mater. 16, 776–780 (2007).  https://doi.org/10.1016/j.diamond.2007.01.005CrossRefGoogle Scholar
  148. 148.
    M. Comet, V. Pichot, B. Siegert, F. Britz, D. Spitzer, Detonation Nanodiamonds for Doping Kevlar. J. Nanosci. Nanotechnol. 10, 4286–4292 (2010).  https://doi.org/10.1166/jnn.2010.2186CrossRefGoogle Scholar
  149. 149.
    O. Shenderova, A.M. Panich, S. Moseenkov, S.C. Hens, V. Kuznetsov, H.M. Vieth, Hydroxylated detonation nanodiamond : FTIR, XPS, and NMR studies. J. Phys. Chem. C 115, 19005–19011 (2011).  https://doi.org/10.1021/jp205389mCrossRefGoogle Scholar
  150. 150.
    R. Martín, M. Álvaro, J.R. Herance, H. García, Fenton-treated functionalized diamond nanoparticles as gene delivery system. ACS Nano 4, 65–74 (2010).  https://doi.org/10.1021/nn901616cCrossRefGoogle Scholar
  151. 151.
    Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of nanoscale diamond powder: Fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem. Mater. 16, 3924–3930 (2004).  https://doi.org/10.1021/cm048875qCrossRefGoogle Scholar
  152. 152.
    G. Lisichkin, V. Korol’kov, B. Tarasevic, I. Kulakova, A. Karpukhin, Photochemical chlorination of nanodiamond and interaction of its modified surface with C-nucleophiles. Russ. Chem. Bull. 55, 2212–2219 (2006).  https://doi.org/10.1007/s11172-006-0574-7
  153. 153.
    B.V. Spitsyn, J.L. Davidson, M.N. Graboboev, T.B. Galushko, N.V. Serebryakova, T.A. Karpukhina, I.I. Kulakova, N.N. Melnik, In road to modifications of detonation nanodiamond. Diam. Relat. Mater. 15, 296–299 (2006).  https://doi.org/10.1016/j.diamond.2005.07.033CrossRefGoogle Scholar
  154. 154.
    V. Ralchenko, L. Nistor, E. Pleuler, A. Khomich, I. Vlasov, R. Khmelnitskii, Structure and properties of high-temperature annealed CVD diamond. Diam. Relat. Mater. 12, 1964–1970 (2003).  https://doi.org/10.1016/S0925-9635(03)00214-0CrossRefGoogle Scholar
  155. 155.
    S. Ogawa, T. Yamada, S. Ishizduka, A. Yoshigoe, M. Hasegawa, Y. Teraoka, Y. Takakuwa, Vacuum annealing formation of graphene on diamond C(111) surfaces studied by real-time photoelectron spectroscopy. Jap. J. Appl. Phys. 51, 11PF02 (2012).  https://doi.org/10.1143/jjap.51.11pf02
  156. 156.
    T. Evans, Changes produced by high temperature treatment of diamond, in The Properties of Natural and Synthetic Diamonds, ed. by J.E. Field (Academic Press, London, 1979), pp. 403–425Google Scholar
  157. 157.
    K.S. Uspenskaya, Y.N. Tolmachev, D.V. Fedoseev, Oxidation and graphitization of diamond at low pressures. Zh. Fiz. Khim. 56, 495 (1982) (in Russian). WOS:A1982ND19900073Google Scholar
  158. 158.
    D.V. Fedoseev, S.P. Vnusov, V.L. Bukhovets, B.A. Anikin, Surface graphitization of diamond at high temperatures. Surf. Coat. Technol. 28, 207–214 (1986).  https://doi.org/10.1016/0257-8972(86)90059-9CrossRefGoogle Scholar
  159. 159.
    G. Davies, Properties and Growth of Diamond (INSPEC, London, 1994)Google Scholar
  160. 160.
    J.F. Prins, Ion implantation of diamond for electronics applications. Semicond. Sci. Technol. 18, S27 (2003).  https://doi.org/10.1088/0268-1242/18/3/304CrossRefGoogle Scholar
  161. 161.
    F. Banhart, Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181 (1999).  https://doi.org/10.1088/0034-4885/62/8/201
  162. 162.
    J.E. Field (ed.), The Properties of Natural and Synthetic Diamonds (Academic Press, London, 1977)Google Scholar
  163. 163.
    O.P. Krivoruchko, V.I. Zaikovski, K.I. Zamaraev, Formation of unsual liquid-like FeC particles and dynamics of their nehavior on amorphous carbon surface at 920–1170 K. Dkl. Akad. Nauk. 329, 744 (1993) (WOS:A1993LR07400017)Google Scholar
  164. 164.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996)Google Scholar
  165. 165.
    V.L. Kuznetsov, Y.V. Butenko, Diamond phase transitions at nanoscale, in Ultrananocrystalline Diamond: Synthesis, Properties and Applications, 2nd edn., ed. by O. Shenderova, D.M. Gruen (Elsevier, 2012)Google Scholar
  166. 166.
    Y.V. Butenko, S. Krishnamurthy, A.K. Chakraborty, V.L. Kuznetsov, V.R. Dhanak, M.R.C. Hunt, L. Scaroniller, L. Šiller, Photoemission study of onionlike carbons produced by annealing nanodiamonds. Phys. Rev. B 71, 75420 (2005).  https://doi.org/10.1103/PhysRevB.71.075420CrossRefGoogle Scholar
  167. 167.
    D. Pech, M. Brunet, H. Durou, P.H. Huang, V. Mochalin, Y. Gogotsi, Ultra-high-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010).  https://doi.org/10.1038/nnano.2010.162CrossRefGoogle Scholar
  168. 168.
    O. Shenderova, C. Jones, V. Borjanovic, S. Hens, G. Cunningham, S. Moseenkov, Detonation nanodiamond and onion-like carbon: applications in composites. Phys. Status Solidi a 205, 2245–2251 (2008).  https://doi.org/10.1002/pssa.200879706CrossRefGoogle Scholar
  169. 169.
    O. Shenderova, T. Tyler, V. Borjanovic, G. Cunningham, M. Ray, J. Walsh, M. Casulli, Nanodiamond and onion-like carbon polymer nanocomposites. Diam. Relat. Mater. 16, 1213–1217 (2007).  https://doi.org/10.1016/S0925-9635(07)00337-8CrossRefGoogle Scholar
  170. 170.
    V.L. Kuznetsov, A.L. Chuvilin, Y.V. Butenko, I.L. Malkov, V.M. Titov, Onion-like carbon from ultradisperse diamond. Chem. Phys. Lett. 222, 343 (1994).  https://doi.org/10.1016/0009-2614(94)87072-1CrossRefGoogle Scholar
  171. 171.
    F. Fugaciu, H. Hermann, G. Seifert, Concentric-shell fullerenes and diamond particles: a molecular-dynamics study. Phys. Rev. B 60, 10711 (1999).  https://doi.org/10.1103/PhysRevB.60.10711CrossRefGoogle Scholar
  172. 172.
    J.Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, L.J. Terminello, Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. Phys. Rev. Lett. 90, 37401 (2003).  https://doi.org/10.1103/PhysRevLett.90.037401CrossRefGoogle Scholar
  173. 173.
    V.L. Kuznetsov, I.L. Zilberberg, Y.V. Butenko, A.L. Chuvilin, B. Segall, Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. J. Appl. Phys. 86, 863 (1999).  https://doi.org/10.1063/1.370816CrossRefGoogle Scholar
  174. 174.
    Y.V. Butenko, V.L. Kuznetsov, A.L. Chuvilin, V.N. Kolomiichuk, S.V. Stankus, R.A. Khairulin, The kinetics of the graphitization of dispersed diamonds at low temperatures. J. Appl. Phys. 88, 4380 (2000).  https://doi.org/10.1063/1.1289791CrossRefGoogle Scholar
  175. 175.
    G. Davies, T. Evans, Graphitization of diamond at zero temperature and a high pressure. Proc. R. Soc. 328, 413 (1972).  https://doi.org/10.1098/rspa.1972.0086CrossRefGoogle Scholar
  176. 176.
    D.S. Su, N.I. Maksimova, G. Mestl, V.L. Kuznetsov, V. Keller, R. Schlogl, N. Keller, Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon. Carbon 45, 2145–2151 (2007).  https://doi.org/10.1016/j.carbon.2007.07.005CrossRefGoogle Scholar
  177. 177.
    K. Xu, Q. Xue, A new method for deaggregation of nanodiamond from explosive detonation: graphitization-oxidation method. Phys. Solid State 46, 649–650 (2004).  https://doi.org/10.1134/1.1711442CrossRefGoogle Scholar
  178. 178.
    O.E. Anderson, B.L.V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, Structure and electronic properties of graphite nanoparticles. Phys. Rev. B 58, 16387–16395 (1998)CrossRefGoogle Scholar
  179. 179.
    J. Qian, C. Pantea, J. Huang, T.W. Zerda, Y. Zhao, Graphitization of diamond powders of different sizes at high pressure-high temperature. Carbon 42, 2691 (2004).  https://doi.org/10.1016/j.carbon.2004.06.017CrossRefGoogle Scholar
  180. 180.
    J. Cebik, J.K. McDonough, F. Peerally, R. Medrano, I. Neitzel, Y. Gogotsi, S. Osswald, Raman spectroscopy study of the nanodiamond-to-carbon onion transformation. Nanotechnology 24, 205703 (2013).  https://doi.org/10.1088/0957-4484/24/20/205703CrossRefGoogle Scholar
  181. 181.
    A. Panich, A.I. Shames, N.A. Sergeev, M. Olszewski, J.K. McDonough, V.N. Mochalin, Y. Gogotsi, Nanodiamond graphitization: a magnetic resonance study. J. Phys.: Condens. Matter 25, 245303 (2013).  https://doi.org/10.1088/0953-8984/25/24/245303CrossRefGoogle Scholar
  182. 182.
    Z. Markovic, V. Trajkovic, Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29, 3561–3573 (2008).  https://doi.org/10.1016/j.biomaterials.2008.05.005 (ref 156)
  183. 183.
    K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33, 2206–2214 (2012).  https://doi.org/10.1016/j.biomaterials.2011.11.064 (ref 157)
  184. 184.
    C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45: 2511–2518 (2007).  https://doi.org/10.1016/j.carbon.2007.08.024 (ref 158)
  185. 185.
    J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, S. Ren, X. Qu, Surface modification and electrochemical behaviour of undoped Nanodiamonds. Electrochem. Acta 72, 68–73 (2012).  https://doi.org/10.1016/j.electacta.2012.03.169 (ref 159)
  186. 186.
    G. Su, H. Zhou, Q. Mu, Y. Zhang, L. Li, P. Jiao, G. Jiang, B. Yan, Effective surface charge density determines the electrostatic attraction between nanoparticles and cells. J. Phys. Chem. C 116, 4993–4998 (2012).  https://doi.org/10.1021/jp211041mCrossRefGoogle Scholar
  187. 187.
    Y.Y. Liu, H. Miyoshi, M. Nakamura, Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007).  https://doi.org/10.1002/ijc.22709
  188. 188.
    A.S. Barnard, Self-assembly in nanodiamond agglutinates. J. Mater Chem. 18, 4038–4041 (2008).  https://doi.org/10.1039/b809188aCrossRefGoogle Scholar
  189. 189.
    E.D. Eidelman, V.I. Siklitsky, L.V. Sharonova, A stable suspension of single ultrananocrystalline diamond particles. Diam. Relat. Mater. 14, 1765–1769 (2005).  https://doi.org/10.1016/j.diamond.2005.08.057CrossRefGoogle Scholar
  190. 190.
    E. Osawa, Recent progress and perspectives in single-digit nanodiamond. Diam. Relat. Mater. 16, 2018–2022 (2007).  https://doi.org/10.1016/j.diamond.2007.08.008CrossRefGoogle Scholar
  191. 191.
    A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl. Mater. Interfaces 2, 3289–3294 (2010).  https://doi.org/10.1021/am100720n (ref 165)
  192. 192.
    A.T. Dideikin, A.E. Aleksenskii, M.V. Baidakova, P.N. Brunkov, M. Brzhezinskaya, V.Y. Davydov, V.S. Levitskii, S.V. Kidalov, Y.A. Kukushkina, D.A. Kirilenko, V.V. Shnitov, A.V. Shvidchenko, B. Senkovskiy, M.S. Shestakov, A.Y. Vul, Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles. Carbon 122, 737–745 (2017).  https://doi.org/10.1016/j.carbon.2017.07.013CrossRefGoogle Scholar
  193. 193.
    R.J. Hunter, Zeta Potential in Colloids Science (Academic Press, NY, 1981)Google Scholar
  194. 194.
    T.M. Riddick, Zeta-Meter Operating Manual zm-75 (Zeta-Meter Inc., New York, 1968)Google Scholar
  195. 195.
    A.V. Delgado, F. González-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena (IUPAC Technical Report). Pure Appl. Chem. 77, 1753–1805 (2005).  https://doi.org/10.1351/pac200577101753CrossRefGoogle Scholar
  196. 196.
    M. Ozawa, M. Inakuma, M. Takahashi, F. Kataoka, A. Krueger, E. Osawa, Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007).  https://doi.org/10.1002/adma.200601452CrossRefGoogle Scholar
  197. 197.
    T. Petit, M. Pflüger, D. Tolksdorf, J. Xiao, E.F. Aziz, Valence holes observed in nanodiamonds dispersed in water. Nanoscale 7, 2987–2991 (2015).  https://doi.org/10.1039/C4NR06639ACrossRefGoogle Scholar
  198. 198.
    T. Petit, H. Yuzawa, M. Nagasaka, R. Yamanoi, E. Osawa, N. Kosugi, E.F. Aziz, Probing interfacial water on nanodiamonds in colloidal dispersion. J. Phys. Chem. Lett. 6, 2909–2912 (2015).  https://doi.org/10.1021/acs.jpclett.5b00820CrossRefGoogle Scholar
  199. 199.
    V.N. Mochalin, I. Neitzel, B. Etzold, A.M. Peterson, G. Palmese, Y. Gogotsi, Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano 9, 7494–7502 (2011).  https://doi.org/10.1021/nn2024539CrossRefGoogle Scholar
  200. 200.
    Y. Morita, T. Takimoto, H. Yamanaka, K. Kumekawa, S. Morino, S. Aonuma, T. Kimura, N. Komatsu, A facile and scalable process for size-controllable separation of nanodiamond particles as small as 4 nm. Small 4, 2154–2157 (2008).  https://doi.org/10.1002/smll.200800944CrossRefGoogle Scholar
  201. 201.
    N. Gibson, O. Shenderova, T.J.M. Luo, S. Moseenkov, V. Bondar, A. Puzyr, K. Purtov, Z. Fitzgerald, D.W. Brenner, Colloidal stability of modified nanodiamond particles. Diam. Relat. Mater. 18, 620–626 (2009).  https://doi.org/10.1016/j.diamond.2008.10.049CrossRefGoogle Scholar
  202. 202.
    K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, T. Oshima, Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2, 327–333 (2008).  https://doi.org/10.1021/nn700151zCrossRefGoogle Scholar
  203. 203.
    Y.F. Li, C.I. Hung, C.C. Li, W. Chin, B.Y. Wei, W.K. Hsu, A gas-phase hydrophilization of carbon nanotubes by xenon excimer ultraviolet irradiation. J. Mater. Chem. 19, 6761 (2009).  https://doi.org/10.1039/b905995dCrossRefGoogle Scholar
  204. 204.
    L. Pospíšil, M. Gál, M. Hromadová, J. Bulícková, V. Kolivoška, J. Cvacka, K. Nováková, L. Kavan, M. Zukalová, L. Dunsch, Search for the form of fullerene C(60) in aqueous medium. Phys. Chem. Chem. Phys. 12, 14095–14101 (2010).  https://doi.org/10.1039/c0cp00986eCrossRefGoogle Scholar
  205. 205.
    H.A. Girard, S. Perruchas, C. Gesset, M. Chaigneau, L. Vieille, J.C. Arnault, P. Bergonzo, J.P. Boilot, T. Gacoin, Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films. ACS Appl. Mater. Interfaces 1, 2738–2746 (2009).  https://doi.org/10.1021/am900458gCrossRefGoogle Scholar
  206. 206.
    J. Hees, A. Kriele, O.A. Williams, Electrostatic self-assembly of diamond nanoparticles. Chem. Phys. Lett. 509, 12–15 (2011).  https://doi.org/10.1016/j.cplett.2011.04.083CrossRefGoogle Scholar
  207. 207.
    C.C. Li, C.L. Huang, Preparation of clear colloidal solutions of detonation nanodiamond n organic solvents. Coll. Surf. Physicochem. Eng. Asp. 353, 52–56 (2010).  https://doi.org/10.1016/j.colsurfa.2009.10.019CrossRefGoogle Scholar
  208. 208.
    A.I. Shames, A.M. Panich, V.Y. Osipov, A.E. Aleksenskiy, A.Y. Vul’, T. Enoki, K. Takai, Structure and magnetic properties of detonation nanodiamond chemically modified by copper. J. Appl. Phys. 107, 014318 (2010).  https://doi.org/10.1063/1.3273486
  209. 209.
    C. Gaillard, H.A. Girard, C. Falck, V. Paget, V. Simic, N. Ugolin, P. Bergonzo, S. Chevillard, J.C. Arnault, RSC Adv. (2013)  https://doi.org/10.1039/c3ra45158e
  210. 210.
    M.A. Montes-Moran, D. Suarez, J.A. Menendez, E. Fuente, On the nature of basic sites on carbon surfaces: an overview. Carbon 42, 1219–1225 (2004).  https://doi.org/10.1016/j.carbon.2004.01.023CrossRefGoogle Scholar
  211. 211.
    C. Leon, J.M. Solar, V. Calemma, L.R. Radovic, Evidence for the protonation of basal-plane sites on carbon. Carbon 30, 797–811 (1992).  https://doi.org/10.1016/0008-6223(92)90164-RCrossRefGoogle Scholar
  212. 212.
    V.L. Kuznetsov, Y.V. Butenko, A.L. Chuvilin, A.I. Romanenko, A.V. Okotrub, Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon. Chem. Phys. Lett. 336, 397–404 (2001).  https://doi.org/10.1016/S0009-2614(01)00135-XCrossRefGoogle Scholar
  213. 213.
    S. Biniak, G. Szymanski, J. Siedlewskia, A. Swiatkowskib, The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35, 1799–1810 (1997).  https://doi.org/10.1016/S0008-6223(97)00096-1CrossRefGoogle Scholar
  214. 214.
    A. Krueger, J. Stegk, Y.J. Liang, L. Lu, G. Jarre, Biotinylated nanodiamond: Simple and efficient functionalization of detonation diamond. Langmuir 24, 4200–4204 (2008).  https://doi.org/10.1021/la703482vCrossRefGoogle Scholar
  215. 215.
    E. Fuente, J.A. Menendez, D. Suarez, M.A. Montes-Moran, Basic surface oxides on carbon materials: a global view. Langmuir 19, 3505–3511 (2003).  https://doi.org/10.1021/la026778aCrossRefGoogle Scholar
  216. 216.
    V. Chakrapani, J.C. Angus, A.B. Anderson, S.D. Wolter, B.R. Stoner, G.U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318, 1424–1430 (2007).  https://doi.org/10.1126/science.1148841CrossRefGoogle Scholar
  217. 217.
    T. Kondo, I. Neitzel, V.N. Mochalin, J. Urai, M. Yuasa, Y. Gogotsi, Electrical conductivity of thermally hydrogenated nanodiamond powders. J. Appl. Phys. 113, 214307 (2013).  https://doi.org/10.1063/1.4809549CrossRefGoogle Scholar
  218. 218.
    S. Stehlik, T. Glatzel, V. Pichot, R. Pawlak, E. Meyer, D. Spitzer, B. Rezek, Water interaction with hydrogenated and oxidized detonation nanodiamonds - microscopic and spectroscopic analyses. Diam. Relat. Mater. 63, 97–102 (2015).  https://doi.org/10.1016/j.diamond.2015.08.016CrossRefGoogle Scholar
  219. 219.
    T. Petit, L. Puskar, T. Dolenko, S. Choudhury, E. Ritter, S. Burikov, K. Laptinskiy, Q. Brzustowski, U. Schade, H. Yuzawa, N. Nagasaka, N. Kosugi, M. Kurzyp, A. Venerosy, H.A. Girard, J.C. Arnault, E. Osawa, N. Nunn, O. Shenderova, E.F. Aziz, Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds. J. Phys. Chem. C 121, 5185–5194 (2017).  https://doi.org/10.1021/acs.jpcc.7b00721CrossRefGoogle Scholar
  220. 220.
    K.K. Liu, C.C. Wang, C.L. Cheng, J.I. Chao, Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30, 4249–4259 (2009).  https://doi.org/10.1016/j.biomaterials.2009.04.056CrossRefGoogle Scholar
  221. 221.
    Y. Yuan, X. Wang, G. Jia, J.H. Liu, T. Wang, Y. Gu, S.T. Yang, S. Zhen, H. Wang, Y. Liu, Pulmonary toxicity and translocation of nanodiamonds in mice. Diam. Relat. Mater. 19, 291–299 (2009).  https://doi.org/10.1016/j.diamond.2009.11.022
  222. 222.
    N. Mohan, C.S. Chen, H.H. Hsieh, Y.C. Wu, H.C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010).  https://doi.org/10.1021/nl1021909CrossRefGoogle Scholar
  223. 223.
    V. Vaijayanthimala, P.Y. Cheng, S.H. Yeh, K.K. Liu, C.H. Hsiao, J.I. Chao, H.C. Chang, The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 33, 7794–7802 (2012).  https://doi.org/10.1016/j.biomaterials.2012.06.084CrossRefGoogle Scholar
  224. 224.
    S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu, Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127, 17604–17605 (2005).  https://doi.org/10.1021/ja0567081
  225. 225.
    Y. Xing, W. Xiong, L. Zhu, E. Osawa, S. Hussin, L. Dai, DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano 5, 2376–2384 (2011).  https://doi.org/10.1021/nn200279k
  226. 226.
    J.A. Sergent, V. Paget, S. Chevillard, Toxicity and genotoxicity of nano-SiO2 on human epithelial intestinal HT-29 cell line. Ann. Occup. Hyg. 56, 622–630 (2012).  https://doi.org/10.1093/annhyg/mes005
  227. 227.
    L.J. Mah, A. El-Osta, T.C. Karagiannis, gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24, 679–686 (2010).  https://doi.org/10.1038/leu.2010.6
  228. 228.
    L. Moore, B. Grobarova, E. Shen, H.B. Man, J. Mıcova, M. Ledvina, J. Stursa, M. Nesladek, A. Fiserova, D. Ho, Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized Nanodiamonds 6, 11712–11721 (2014).  https://doi.org/10.1039/c4nr02570a
  229. 229.
    C. Sicard-Roselli, E. Brun, M. Gilles, G. Baldacchino, C. Kelsey, H. McQuaid, C. Polin, N. Wardlow, F. Currell, A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions. Small 10, 3338–3346 (2014).  https://doi.org/10.1002/smll.201400110CrossRefGoogle Scholar
  230. 230.
    A.M. Schrand, J.B. Lin, S.C. Hens, S.M. Hussain, Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds. Nanoscale 3, 435–445 (2011).  https://doi.org/10.1039/c0nr00408aCrossRefGoogle Scholar
  231. 231.
    I.P. Chang, K.C. Hwang, C.S. Chiang, Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J. Am. Chem. Soc. 130, 15476–15481 (2008).  https://doi.org/10.1021/ja804253yCrossRefGoogle Scholar
  232. 232.
    U. Maitra, A. Jain, S.J. George, C.N. Rao, Tunable fluorescence in chromophore-functionalized nanodiamond induced by energy transfer. Nanoscale 3, 3192–3197 (2011).  https://doi.org/10.1039/c1nr10295hCrossRefGoogle Scholar
  233. 233.
    Q. Zhang, V.N. Mochalin, I. Neitzel, I.Y. Knoke, J. Han, C.A. Klug, J.G. Zhou, P.I. Lelkes, Y. Gogotsi, Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32, 87–94 (2011).  https://doi.org/10.1016/j.biomaterials.2010.08.090CrossRefGoogle Scholar
  234. 234.
    X.Q. Zhang, M. Chen, R. Lam, X.Y. Xu, E. Osawa, D. Ho, Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3, 2609–2616 (2009).  https://doi.org/10.1021/nn900865gCrossRefGoogle Scholar
  235. 235.
    H.D. Wang, Q. Yang, C.H. Niu, I. Badea, Protein-modified nanodiamond particles for Layer-by-Layer assembly. Diam. Relat. Mater. 20, 1193–1198 (2011).  https://doi.org/10.1016/j.diamond.2011.06.015CrossRefGoogle Scholar
  236. 236.
    Y.K. Tzeng, O. Faklaris, B.M. Chang, Y. Kuo, J.H. Hsu, H.C. Chang, Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew. Chem. Int. Ed. Eng. 50, 2262–2265 (2011).  https://doi.org/10.1002/anie.201007215CrossRefGoogle Scholar
  237. 237.
    C.Y. Cheng, E. Perevedentseva, J.S. Tu, P.H. Chung, C.L. Cheng, K.K. Liu, J.I. Chao, P.H. Chen, C.C. Chang, Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl. Phys. Lett. 90, 163903 (2007).  https://doi.org/10.1063/1.2727557CrossRefGoogle Scholar
  238. 238.
    D.T. Tran, V. Vermeeren, L. Grieten, S. Wenmackers, P. Wagner, J. Pollet, K.P. Janssen, L. Michiels, J. Lammertyn, Nanocrystalline diamond impedimetric aptasensor for the label-free detection of human IgE. Biosens. Bioelectron. 26, 2987–2993 (2011).  https://doi.org/10.1016/j.bios.2010.11.053CrossRefGoogle Scholar
  239. 239.
    A.H. Smith, E.M. Robinson, X.Q. Zhang, E.K. Chow, Y. Lin, E. Osawa, J. Xi, Ho D (2011) triggered release of therapeutic antibodies from nanodiamond complexes. Nanoscale 3, 2844 (2011).  https://doi.org/10.1039/c1nr10278hCrossRefGoogle Scholar
  240. 240.
    A. Barras, J. Lyskawa, S. Szunerits, P. Woisel, R. Boukherroub, Direct functionalization of nanodiamond particles using dopamine derivatives. Langmuir 27, 12451–12457 (2011).  https://doi.org/10.1021/la202571dCrossRefGoogle Scholar
  241. 241.
    R.A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.Q. Zhang, H. Huang, E. Osawa, D. Ho, Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30, 5720–5728 (2009).  https://doi.org/10.1016/j.biomaterials.2009.07.004CrossRefGoogle Scholar
  242. 242.
    E. Perevedentseva, P.J. Cai, Y.C. Chiu, C.L. Cheng, Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications. Langmuir 27, 1085–1091 (2011).  https://doi.org/10.1021/la103155cCrossRefGoogle Scholar
  243. 243.
    T.T.B. Nguyen, H.C. Chang, V.W.K. Wu, Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. Diam. Relat. Mater. 16, 872–876 (2007).  https://doi.org/10.1016/j.diamond.2007.01.030CrossRefGoogle Scholar
  244. 244.
    V.S. Bondar, I.O. Pozdnyakova, A.P. Puzyr, Applications of nanodiamonds for separation and purification of proteins. Phys. Solid State 46, 758–760 (2004).  https://doi.org/10.1134/1.1711468CrossRefGoogle Scholar
  245. 245.
    R. Lam, M. Chen, E. Pierstorff, H. Huang, E. Osawa, D. Ho, Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2, 2095–2102 (2008).  https://doi.org/10.1021/nn800465xCrossRefGoogle Scholar
  246. 246.
    H. Huang, E. Pierstorff, E. Osawa, D. Ho, Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 7, 3305–3314 (2007).  https://doi.org/10.1021/nl071521oCrossRefGoogle Scholar
  247. 247.
    M. Chen, X.Q. Zhang, H.B. Man, R. Lam, E.K. Chow, D. Ho, Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. J. Phys. Chem. Lett. 1, 3087–3095 (2010).  https://doi.org/10.1021/jz1013278CrossRefGoogle Scholar
  248. 248.
    H. Huang, E. Pierstorff, E. Osawa, D. Ho, Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano 2, 203–212 (2008).  https://doi.org/10.1021/nn7000867CrossRefGoogle Scholar
  249. 249.
    J. Tisler, R. Reuter, A. Lammle, F. JElezko, G. Balasubramanian, P.R. Hemmer, F. Reinhard, J. Wrachtrup, Highly efficient FRET from single NV center in nanodiamonds to single organic molecule. ACS Nano 5, 7893–7898 (2011).  https://doi.org/10.1021/nn2021259
  250. 250.
    S. Haziza, N. Mohan, Y. Loe-Mie, A.M. Lepagnol-Bestel, S. Massou, P. AdamM, X.L. Le, J. Viard, C. Plancon, R. Daudin, P. Koebel, E. Dorard, C. Rose, F.J. Hsieh, C.C. Wu, B. Potier, Y. Herault, C. Sala, A. Corvin, B. Allinquant, H.C. Chang, F. Treussart, M. Simonneau, Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nat. Nanotechnol. 12, 322–328 (2016).  https://doi.org/10.1038/NNANO.2016.260CrossRefGoogle Scholar
  251. 251.
    N. Mohan, Y.K. Tzeng, L. Yang, Y.Y. Chen, Y.Y. Hui, C.Y. Fang, H.C. Chang, Sub-20-nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors. Adv. Mater. 22, 843–847 (2010).  https://doi.org/10.1002/adma.200901596CrossRefGoogle Scholar
  252. 252.
    P. Reineck, D.W.M. Lau, E.R. Wilson, K. Fox, M.R. Field, C. Deeleepojananan, V.N. Mochalin, B.C. Gibson, Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano 11, 10924–10934 (2017).  https://doi.org/10.1021/acsnano.7b04647CrossRefGoogle Scholar
  253. 253.
    L.J. Rogers, K.D. Jahnke, M.H. Metsch, A. Sipahigil, J.M. Binder, T. Teraji, H. Sumiya, J. Isoya, M.D. Lukin, P. Hemmer, F. Jelezko, All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263602 (2014).  https://doi.org/10.1103/physrevlett.113.263602
  254. 254.
    I.I. Vlasov, A.A. Shiryaev, T. Rendler, S. Steinert, S.Y. Lee, D. Antonov, Vörös M, J. Jelezko, A.V. Fisenko, L.F. Semjonova, J. Biskupek, U. Kaiser, O.I. Lebedev, I. Sildos, P.R. Hemmer, V.I. Konov, A. Gali, J. Wrachtrup, Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9, 54–58 (2014).  https://doi.org/10.1038/NNANO.2013.255CrossRefGoogle Scholar
  255. 255.
    H. Zhang, I. Aharonovich, D.R. Glenn, R. Schalek, A.P. Magyar, J.W. Lichtman, E.L. Hu, R.L. Walsworth silicon-vacancy color centers in nanodiamonds: cathodoluminescence imaging markers in the near infrared. Small 10 1908–1913 (2014).  https://doi.org/10.1002/smll.201303582
  256. 256.
    V.A. Davydov, A.V. Rakhmanina, S.G. Lyapin, I.D. Ilichev, K.N. Boldyrev, A.A. Shiryaev, V.N. Agafonov, Production of nano and microdiamonds with Si–V and N-V luminescent centers at high pressures in systems based on mixtures of hydrocarbon and fluorocarbon compounds. JETP Lett. 99, 585–589 (2014).  https://doi.org/10.1134/S002136401410004XCrossRefGoogle Scholar
  257. 257.
    T.D. Merson, S. Castelletto, I. Aharonovitch, A. Turbic, T.J. Kilpatrick, A.M. Turnley, Nanodiamonds with silicon vacancy defects for nontoxic photostable fluorescent labeling of neural precursor cells. Opt. Lett. 38, 4170–4172 (2013).  https://doi.org/10.1364/OL.38.004170CrossRefGoogle Scholar
  258. 258.
    V. Pichot, B. Risse, F. Schnell, J. Mory, D. Spitzer, Understanding ultrafine nanodiamond formation using nanostructured explosives. Sci. Rep. 3, 2159 (2013).  https://doi.org/10.1038/srep02159
  259. 259.
    V. Pichot, M. Comet, B. Risse, D. Spitzer, Detonation of nanosized explosive: new mechanistic model for nanodiamond formation. Diam. Relat. Mater. 54, 59–63 (2015).  https://doi.org/10.1016/j.diamond.2014.09.013
  260. 260.
    V. Grichko, T. Tyler, V.I. Grishko, O. Shenderova, Nanodiamond particles forming photonic structures. Nanotechnology 19, 225201 (2008).  https://doi.org/10.1088/0957-4484/19/22/225201CrossRefGoogle Scholar
  261. 261.
    O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J.C. Arnault, A. Thorel, J.P. Boudou, P.A. Curmi, F. Treussart, Photoluminescent diamond nanoparticles for cell labeling: Study of the uptake mechanism in mammalian cells. ACS Nano 3, 3955–3962 (2009).  https://doi.org/10.1021/nn901014jCrossRefGoogle Scholar
  262. 262.
    L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Milvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg, Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotech. 6, 358–363 (2011).  https://doi.org/10.1038/nnano.2011.64CrossRefGoogle Scholar
  263. 263.
    S.C. Hens, G. Cunningham, T. Tyler, S. Moseenkov, V. Kuznetsov, O. Shenderova, Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam. Relat. Mater. 17, 1858–1866 (2008).  https://doi.org/10.1016/j.diamond.2008.03.020CrossRefGoogle Scholar
  264. 264.
    V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009).  https://doi.org/10.1021/ja9004514CrossRefGoogle Scholar
  265. 265.
    L.M. Manus, D.J. Mastarone, E.A. Waters, X.Q. Zhang, E.A. Schultz-Sikma, K.W. MacRenaris, D. Ho, T.J. Meade, Gd(III)-nanodiamond conjugates for MRI contrast enhancement. NanoLett. 10, 484–489 (2010).  https://doi.org/10.1021/nl903264hCrossRefGoogle Scholar
  266. 266.
    H.A. Girard, A. El Kharbachi, S. Garcia-Argote, T. Petit, P. Bergonzo, B. Rousseau, J.C. Arnault, Tritium labeling of detonation nanodiamonds. Chem. Commun. 50, 2916–2918 (2014).  https://doi.org/10.1039/c3cc49653hCrossRefGoogle Scholar
  267. 267.
    S.S. Tinkle, Maximizing safe design of engineered nanomaterials: the NIH and NIEHS research perspective. Wiley Interdiscip. Rev.: Nanomedicine Nanobiotechnology 2, 88–98 (2010).  https://doi.org/10.1002/wnan.63
  268. 268.
    D.B. Warheit, P.J.A. Borm, C. Hennes, J. Lademann, Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal. Toxicol. 19, 631–643 (2007).  https://doi.org/10.1080/08958370701353080CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CEA, LIST, Diamond Sensors LaboratoryGif sur YvetteFrance

Personalised recommendations