Advertisement

Spectroscopy of Nanodiamond Surface: Investigation and Applications

  • Ashek-I-Ahmed
  • Elena V. Perevedentseva
  • Artashes Karmenyan
  • Chia-Liang ChengEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

Nanodiamond is one of the carbon families that has attracted much attention recently for its versatile spectroscopic properties; render it promising potential in optoelectronic, quantum computation, and bio/medical applications. With sizes ranging from several hundred down to single digit nanometers, nanodiamond represents a group of nanomaterial with rich surfaces both in its physical and chemical properties. Its surface and bulk consist of carbon of bonding of different nature. The sp2/sp3 hybridization forming diamond, graphite, disorder/amorphous carbons and defects are easily detectable using infrared and Raman spectroscopy and allow both easy characterization and the surface modification or conjugation with molecules of interest. Recently nanodiamond is considered as one of the most biocompatible nanomaterials. With the newly discussed defects-originated fluorescence, renders nanodiamond suitable for bio-labeling, bio-sensing and drug delivery. In this chapter, the authors review and discuss the spectroscopic studies of nanodiamond surfaces focusing on the infrared spectroscopy, Raman spectroscopy, including SERS, photoluminescence spectroscopy and lifetime analysis. Applications of these methods to detect and analyze surface structural features, surface molecular groups and macromolecules conjugations, interactions between nanodiamond surface moieties and its environments, etc. are discussed. These open new possibilities for bio-medical applications, for multimodal imaging, sensing, and controllable drug delivery of nanodiamond.

Keywords

Nanodiamond Spectroscopy Surface properties Surface functionalization 

Notes

Acknowledgements

The authors appreciate the financial support of this research by the Ministry of Science and Technology (MOST) of Taiwan, Grant No. MOST 106-2112-M-259-009-MY3.

References

  1. 1.
    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7(1), 11–23 (2012)CrossRefGoogle Scholar
  2. 2.
    E. Perevedentseva, Y.-C. Lin, M. Jani, C.-L. Cheng, Biomedical applications of nanodiamonds in imaging and therapy. Futur. Med. 8(12), 2041–2060 (2013)Google Scholar
  3. 3.
    K. Turcheniuk, V.N. Mochalin, Biomedical applications of nanodiamond (Review). Nanotechnology 28, 252001 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Chipaux, K.J. van der Laan, S.R. Hemelaar, M. Hasani, T. Zheng, R. Schirhagl, Nanodiamonds and their applications in cells. Small 14(24), e1704263 (2018).  https://doi.org/10.1002/smll.201704263
  5. 5.
    G. Hong, S. Diao, A.L. Antaris, H. Dai, Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115(19), 10816–10906 (2015)CrossRefGoogle Scholar
  6. 6.
    T. Plakhotnik, H. Aman, NV-centers in nanodiamonds: how good they are. Diam. Relat. Mater. 82, 87–95 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, K.Y. Rhee, D. Hui, S.-J. Park, A critical review of nanodiamond based nanocomposites: synthesis, properties and applications. Compos. B 143, 19–27 (2018)CrossRefGoogle Scholar
  8. 8.
    K.J. van der Laan, M. Hasani, T. Zheng, R. Schirhagl, Nanodiamonds for in vivo applications. Small 14(19), e1703838 (2018)Google Scholar
  9. 9.
    D.G. Lim, R.E. Prim, K.H. Kim, E. Kang, K. Park, S.H. Jeong, Combinatorial nanodiamond in pharmaceutical and biomedical applications. Int. J. Pharm. 514, 41–51 (2016)CrossRefGoogle Scholar
  10. 10.
    C. Bradac, I. Das Rastogi, N.M. Cordina, A. Garcia-Bennett, L.J. Brown, Influence of surface composition on the colloidal stability of ultra-small detonation nanodiamonds in biological media. Diam. Relat. Mater. 83, 38–45 (2018)Google Scholar
  11. 11.
    P. Reineck, D.W.M. Lau, E.R. Wilson, N. Nunn, O.A. Shenderova, B.C. Gibson, Visible to near-IR fluorescence from single-digit detonation nanodiamonds: excitation wavelength and pH dependence. Sci. Rep. 8, 2478 (2018)CrossRefGoogle Scholar
  12. 12.
    V. Pichot, O. Muller, A. Seve, A. Yvon, L. Merlat, D. Spitzer, Optical properties of functionalized nanodiamonds. Sci. Rep. 7, 14086 (2017)CrossRefGoogle Scholar
  13. 13.
    R. Tappert, M.C. Tappert, Diamond in nature; A guide to rough diamonds (Chapter-1 & 2, Springer, Berlin, Heidelberg, 2011), pp. 1–40.  https://doi.org/10.1007/978-3-642-12572-0
  14. 14.
    H.O. Pierson, (ed.), Structure and properties of diamond and diamond polytypes, in Handbook of Carbon, Graphite, Diamond and Fullerenes; Properties, Processing and Applications (Chapter-11, William Andrew Publishing, Oxford, 1993), pp. 244–277. doi: https://doi.org/10.1016/B978-0-8155-1339-1.50016-5
  15. 15.
    R.P. Mildren, J.R. Rabeau, (eds.), Optical engineering of diamond (Chapter-5, Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr.12, 69469 Weinheim, Germany, 2013), pp. 143–145 [ https://doi.org/10.1002/9783527648603]
  16. 16.
    C.-L. Cheng, H.-C. Chang, J.-C. Lin, K.-J. Song, J.-K. Wang, Direct observation of hydrogen etching anisotropy on diamond single crystal surfaces. Phys. Rev. Lett. 78(19), 3713–3716 (1997)CrossRefGoogle Scholar
  17. 17.
    A.P. Jones, L.I. D’Hendercourt, Interstellar nanodiamonds: the carriers of mid-infrared emission bands? Astron. Astrophys. 355, 1191–1200 (2000)Google Scholar
  18. 18.
    J.-S. Tu, E. Perevedentseva, P.-H. Chung, C.-L. Cheng, Size-dependent surface CO stretching frequency investigations on nanodiamond particles. J. Chem. Phys. 125, 174713 (2006)CrossRefGoogle Scholar
  19. 19.
    V. Dolmatov, T. Fujimura, Physical and chemical problems of modification of detonation nanodiamond surface properties, in Synthesis, Properties and Applications of Ultrananocrystalline Diamond, ed. by D.M. Gruen, O.A. Shenderova, A.Y. Vul’. NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol. 192 (Springer, Dordrecht, 2005), pp. 217–230Google Scholar
  20. 20.
    C.-L. Cheng, C.-F. Chen, W.-C. Shaio, D.-S. Tsai, K.-H. Chen, The CH stretching features on diamonds of different origins. Diam. Relat. Mater. 14(9), 1455–1462 (2005)CrossRefGoogle Scholar
  21. 21.
    L.C.L. Huang, H.-C. Chang, Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20(14), 5879–5884 (2004)CrossRefGoogle Scholar
  22. 22.
    T. Ando, K. Yamamoto, M. Ishii, M. Kamo, Y. Sato, J. Chem, Vapour-phase oxidation of diamond surfaces in O2 studied by diffuse reflectance Fourier-transform infrared and temperture-programmed desorption spectroscopy. Soc. Faraday Trans. 89, 3635–3640 (1993)Google Scholar
  23. 23.
    T. Tsubota, O. Hirabayashi, S. Ida, S. Nagaoka, M. Nagata, Y. Matsumoto, Chemical modification of hydrogenated diamond surface using benzoyl peroxides. Phys. Chem. Chem. Phys. 4, 806–811 (2002)CrossRefGoogle Scholar
  24. 24.
    P.H. Chung, E. Perevedentseva, J.S. Tu, C.C. Chang, C.-L. Cheng, Spectroscopic study of bio-functionalized nanodiamonds. Diam. Relat. Mater. 15, 622–625 (2006)CrossRefGoogle Scholar
  25. 25.
    Y.-R. Chen, H.-C. Chang, C.-L. Cheng, C.-C. Wang, J. C. Jiang, Size dependence of C-H stretching features on diamond nanocrystal surfaces: infrared spectroscopy and density functional theory calculations. J. Chem. Phys. 119, 10626 (2003)Google Scholar
  26. 26.
    C.-D. Chu, E. Perevedentseva, V. Yeh, S.-J. Cai, J.-S. Tu, C.-L. Cheng, Temperature-dependent surface C=O stretching frequency investigation of functionalized ND particles. Diam. Relat. Mater. 19, 76–81 (2009)CrossRefGoogle Scholar
  27. 27.
    I.I. Kulakova, Surface chemistry of nanodiamonds. Phys. Solid State 46, 636–643 (2004)CrossRefGoogle Scholar
  28. 28.
    M. Jani, J.-S. Tu, T.-Y. Kang, C.-Y. Tsai, E. Perevedentseva, C.-L. Cheng, Surface modification of nanodiamond: photoluminescence and Raman studies. Diam. Relat. Mater. 24, 134–138 (2012)Google Scholar
  29. 29.
    A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dressehaus, Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187–191 (1997)CrossRefGoogle Scholar
  30. 30.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. J. Phys. Rev. B 61, 14095–14107 (2000)CrossRefGoogle Scholar
  31. 31.
    A.C. Ferrari, J. Robertson, Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405(R) (2001)CrossRefGoogle Scholar
  32. 32.
    R. Pfeiffer, H. Kuzmany, N. Salk, B. Gunther, Evidence for trans-polyacetylene in nanocrystalline diamond films from H-D isotropic substitution experiments. Appl. Phys. Lett. 82, 4149–4150 (2003)CrossRefGoogle Scholar
  33. 33.
    S. Prawer, K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, J.L. Peng, The Raman spectrum of nanocrystalline diamond. Chem. Phys. Lett. 332(1–2), 93–97 (2000)CrossRefGoogle Scholar
  34. 34.
    V.I. Korepanov, H.O. Hamaguchi, E. Osawa, V. Ermolenkov, I.K. Lednev, B.J.M. Etzold, O. Levinson, B. Zousman, C. Prakash Epperla, H.-C. Chang, Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon 121, 322e329 (2017)Google Scholar
  35. 35.
    V. Mochalin, S. Osswald, Y. Gogotsi, Contribution of functional groups to the Raman spectrum of nanodiamond powders. Chem. Mater. 21(2), 273–279 (2009)CrossRefGoogle Scholar
  36. 36.
    M. Mermoux, A. Crisci, T. Petit, H.A. Girard, J.-C. Arnault, Surface modifications of detonation nanodiamonds probed by multiwavelength Raman spectroscopy. J. Phys. Chem. C 118, 23415–23425 (2014)CrossRefGoogle Scholar
  37. 37.
    P. Reineck, D.W.M. Lau, E.R. Wilson, K. Fox, M.R. Field, C. Deeleepojananan, V.N. Mochalin, B.C. Gibson, Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano 11, 10924–10934 (2017)CrossRefGoogle Scholar
  38. 38.
    V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131(13), 4594–4595 (2009)CrossRefGoogle Scholar
  39. 39.
    S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in Air. J. Am. Chem. Soc. 128(35), 11635–11642 (2006)Google Scholar
  40. 40.
    V.Y. Osipov, A.M. Panich, A.V. Baranov, Comment on “Carbon structure in nanodiamonds elucidated from Raman spectroscopy” by V.I. Korepanov et al. Carbon 127, 193–194 (2018)Google Scholar
  41. 41.
    T.A. Dolenko, S.A. Burikov, J.M. Rosenholm, O.A. Shenderova, I.I. Vlasov, Diamond−water coupling effects in Raman and photoluminescence spectra of nanodiamond colloidal suspensions. J. Phys. Chem. C 116, 24314–24319 (2012)CrossRefGoogle Scholar
  42. 42.
    T. Petit, L. Puskar, T. Dolenko, S. Choudhury, E. Ritter, S. Burikov, K. Laptinskiy, Q. Brzustowski, U. Schade, H. Yuzawa, M. Nagasaka, N. Kosugi, M. Kurzyp, A. Venerosy, H. Girard, J.-C. Arnault, E. Osawa, N. Nunn, O. Shenderova, E.F. Aziz, Unusual water hydrogen bond network around hydrogenated nanodiamonds. J. Phys. Chem. C 121, 5185–5194 (2017)CrossRefGoogle Scholar
  43. 43.
    J. Zheng, Y. Ding, B. Tian, Z.L. Wang, X. Zhuang, Luminescent and Raman active silver nanoparticles with polycrystalline structure. J. Am. Chem. Soc. 130, 10472–10473 (2008)CrossRefGoogle Scholar
  44. 44.
    M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985)Google Scholar
  45. 45.
    S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)CrossRefGoogle Scholar
  46. 46.
    H. Xu, E.J. Bjerneld, M. Kall, L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999)CrossRefGoogle Scholar
  47. 47.
    Z.-C. Hong, E. Perevedentseva, S. Treschev, J.-B. Wang, C.-L. Cheng, Surface enhanced Raman scattering of nanodiamond using visible-light-activated TiO2 as a catalyst to photo-reduce nanostructured silver from AgNO3 as SERS-active substrate. J. Raman Spectrosc. 40(8), 1016–1022 (2009)CrossRefGoogle Scholar
  48. 48.
    A. Karmenyan, E. Perevedentseva, A. Chiou, C.-L. Cheng, Positioning of carbon nanostructures on metal surfaces using laser acceleration and the Raman analyses of the patterns. Eur. J. Phys. 61, 513–517 (2007)Google Scholar
  49. 49.
    M. Veres, E. Perevedentseva, A.V. Karmenyan, S. Tóth, S. Koós, Catalytic activity of gold on nanocrystalline diamond support. Phys. Status Solidi C 7(3–4), 1211–1214 (2010)Google Scholar
  50. 50.
    E. Perevedentseva, A. Karmenyan, P.H. Chung, Y.T. He, C.-L. Cheng, Surface enhanced Raman spectroscopy of carbon nanostructures. Surf. Sci. 600, 3723–3728 (2006)CrossRefGoogle Scholar
  51. 51.
    S.J. Chase, W.S. Bacsa, M.G. Mitch, L.J. Pilione, J.S. Lannin, Surface-enhanced Raman scattering and photoemission of C60 on noble-metal surfaces. Phys. Rev. B 46, 7873–7877 (1992)CrossRefGoogle Scholar
  52. 52.
    M. Roy, V.C. George, A.K. Dua, P. Raj, S. Schulze, D.A. Tenne, G. Salvan, D.R.T. Zahn, Detection of nanophase at the surface of HFCVD grown diamond films using surface enhanced Raman spectroscopic (SERS) technique. Diam. Relat. Mater. 11, 1858–1862 (2002)CrossRefGoogle Scholar
  53. 53.
    M. Veres, M. Fule, S. Toth, M. Koos, I. Pocsik, Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diam. Relat. Mater. 13, 1412–1415 (2004)CrossRefGoogle Scholar
  54. 54.
    E.C. Le Ru, P.G. Etchegoin, Sub-wavelength localization of hot-spots in SERS. Chem. Phys. Lett. 396, 393–397 (2004)CrossRefGoogle Scholar
  55. 55.
    M. Veres, S. Tóth, E. Perevedentseva, A. Karmenyan, M. Koós, Detection of structural units of nanocrystalline diamond surfaces using surface-enhanced Raman scattering, in Nanotechnological Basis for Advanced Sensors (NATO Science for Peace and Security Series B: Physics and Biophysics), ed. by J.P. Reithmaier, P. Paunovic (Springer, Netherlands, 2011), pp. 111–120Google Scholar
  56. 56.
    A.V. Karmenyan, E. Perevedentseva, M. Veres, C.-L. Cheng, Simultaneous PL and SERS observation of ND at laser deposition on noble metals. Plasmonics 8, 325–333 (2012)CrossRefGoogle Scholar
  57. 57.
    H. Chacham, L. Kleinman, Instabilities in diamond under high shear stress. Phys. Rev. Lett. 85, 4904 (2000)CrossRefGoogle Scholar
  58. 58.
    J. Qian, C. Pantea, G. Voronin, T.W. Zerda, Partial graphitization of diamond crystals under high-pressure and high-temperature conditions. J. Appl. Phys. 90, 1632 (2001)CrossRefGoogle Scholar
  59. 59.
    R.M. Erasmus, R.D. Daniel, J.D. Comins, Three-dimensional mapping of stresses in plastically deformed diamond using micro-Raman and photoluminescence spectroscopy. J. Appl. Phys. 109, 013527 (2011)CrossRefGoogle Scholar
  60. 60.
    Y. Gogotsi, A. Kailer, K.G. Nickel, Transformation of diamond to graphite. Nature 40, 663 (1999)CrossRefGoogle Scholar
  61. 61.
    D.S. Knight, W.B. White, Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385–393 (1989)CrossRefGoogle Scholar
  62. 62.
    A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Func. Mater. 22(5), 890–906 (2012)CrossRefGoogle Scholar
  63. 63.
    I. Kulakova, V.V. Korol’kov, R.Y. Yakovlev, G.V. Lisichkin, The structure of chemically modified detonation synthesized nanodiamond particles. Nanotechnol. Russ. 5(7–8), 474–485 (2010)Google Scholar
  64. 64.
    B.V. Spitsyn, J.L. Davidson, M.N. Gradoboev, T.B. Galushko, N.V. Serebryakova, T.A. Karpukhina, I.I. Kulakova, N.N. Melnik, Inroad to modification of detonation nanodiamond. Diam. Relat. Mater. 15, 296–299 (2006)CrossRefGoogle Scholar
  65. 65.
    I. Petrov, O. Shenderova, V. Grishko, V. Grichko, T. Tyler, G. Cunningham, G. McGuire, Detonation nanodiamonds simultaneously purified and modified by gas treatment. Diam. Relat. Mater. 16, 2098–2103 (2007)CrossRefGoogle Scholar
  66. 66.
    M.A. Ray, O. Shenderova, W. Hook, A. Martin, V. Grishko, T. Tyler, G.B. Cunningham, G. McGuire, Cold plasma functionalization of nanodiamond particles. Diam. Relat. Mater. 15, 1809–1812 (2006)CrossRefGoogle Scholar
  67. 67.
    G.A. Chiganova, Aggregation of particles in ultradispersed diamond hydrosols. Colloid J. 62(2), 238–243 (2000)Google Scholar
  68. 68.
    A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Y. Vul’, E. Ōsawa, Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43(8), 1722–1730 (2005)Google Scholar
  69. 69.
    A. Krueger, Y. Liang, G. Jarre, J. Stegk, Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 16(24), 2322–2328 (2006)CrossRefGoogle Scholar
  70. 70.
    H.A. Girard, T. Petit, S. Perruchas, T. Gacoin, C. Gesset, J.C. Arnault, P. Bergonzo, Surface properties of hydrogenated nanodiamonds: a chemical investigation. Phys. Chem. Chem. Phys. 13(24), 11517–11523 (2011)CrossRefGoogle Scholar
  71. 71.
    V.V. Korolkov, I.I. Kulakova, B.N. Tarasevich, G.V. Lisichkin, Dual reaction capacity of hydrogenated nanodiamond. Diam. Relat. Mater. 16(12), 2129–2132 (2007)CrossRefGoogle Scholar
  72. 72.
    A.-I. Ahmed, S. Mandal, L. Gines, O.A. Williams, C.-L. Cheng, Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon 110, 438–442 (2016)CrossRefGoogle Scholar
  73. 73.
    O.A. Williams, J. Hees, C. Dieker, W. Jager, L. Kirste, C.E. Nebel, Size-dependent reactivity of diamond nanoparticles. ACS Nano 4(8), 4824–4830 (2010)CrossRefGoogle Scholar
  74. 74.
    S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128(35), 11635–11642 (2006)CrossRefGoogle Scholar
  75. 75.
    E. Neu, F. Guldner, C. Arend, Y. Liang, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, A. Krueger, C. Becher, Low temperature investigations and surface treatments of colloidal narrowband fluorescent nanodiamonds. J. Appl. Phys. 113, 203507 (2013)CrossRefGoogle Scholar
  76. 76.
    I. Aharonovich, A.D. Greentree, S. Prawer, Diamond photonics. Nat. Photonics 5, 397–405 (2011)CrossRefGoogle Scholar
  77. 77.
    M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L.C.L. Hollenberg, The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528(1), 1–45 (2013)CrossRefGoogle Scholar
  78. 78.
    I. Aharonovich, S. Castelletto, D.A. Simpson, C.-H. Su, A.D. Greentree, S. Prawer, Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 076501 (2011)Google Scholar
  79. 79.
    J. Wrachtrup, F. Jelezko, Processing quantum information in diamond J. Phys. Condens. Matter 18, S807 (2006)Google Scholar
  80. 80.
    H.S. Knowles, D.M. Kara, M. Atatüre, Observing bulk diamond spin coherence in high-purity nanodiamonds. Nat. Mater. 13, 21–25 (2014)CrossRefGoogle Scholar
  81. 81.
    A.W. Schell, G. Kewes, T. Hanke, A. Leitenstorfer, R. Bratschitsch, O. Benson, T. Aichele, Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. Opt. Express 19, 7914–7920 (2011)CrossRefGoogle Scholar
  82. 82.
    C.C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, W. Fann, Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. U.S.A. 104(3), 727–732 (2007)CrossRefGoogle Scholar
  83. 83.
    J. Narayan, A. Bhaumik, Novel synthesis and properties of pure and NV-doped nanodiamonds and other nanostructures. Mater. Res. Lett. 5(4), 242–250 (2016)CrossRefGoogle Scholar
  84. 84.
    C. Bradac, T. Gaebel, C.I. Pakes, J.M. Say, A.V. Zvyagin, J.R. Rabeau, Effect of the nanodiamond host on a nitrogen-vacancy color-centre emission state. Small 9, 132 (2013)CrossRefGoogle Scholar
  85. 85.
    G.S. Gildenblat, S.A. Grot, A. Badzian, The electrical properties and device applications of homoepitaxial and polycrystalline diamond films. Proc. IEEE 79, 647–668 (1991)CrossRefGoogle Scholar
  86. 86.
    I. Kratochvılova, A. Kovalenko, F. Fendrych, V. Petráková, S. Záliš, M. Nesládek, Tuning of nanodiamond particles’ optical properties by structural defects and surface modifications: DFT modelling. J. Mater. Chem. 21, 18248 (2011)CrossRefGoogle Scholar
  87. 87.
    A. Kovalenko, V. Petráková, P. Ashcheulov, S. Záliš, M. Nesládek, I. Kraus, I. Kratochvílová, Parameters affecting the luminescence of nanodiamond particles: quantum chemical calculations. Phys. Status Solidi A 209, 1769–1773 (2012)CrossRefGoogle Scholar
  88. 88.
    V. Petrakova, A. Taylor, I. Kratochvílová, F. Fendrych, J. Vacík, J. Kučka, J. Štursa, P. Cígle, M. Ledvina, A. Fišerová, P. Kneppo, M. Nesládek, Luminescence of nanodiamond driven by atomic functionalization: towards novel detection principles. Adv. Funct. Mater. 22, 812–819 (2012)Google Scholar
  89. 89.
    K. Yakoubovskii, Luminescence excitation spectra in diamond. Phys. Rev. B 61(15), 010174 (2000)CrossRefGoogle Scholar
  90. 90.
    S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)CrossRefGoogle Scholar
  91. 91.
    P. Reineck, A. Francis, A. Orth, D.W.M. Lau, R.D.V. Nixon-Luke, I.D. Rastogi, W.A.W. Razali, L.M. Parker, V.K.A. Sreenivasan, L.J. Brown, B.C. Gibson, Brightness and photostability of emerging red and near-IR fluorescent nanomaterials for bioimaging. Adv. Opt. Mater. 4, 1549–1557 (2016)CrossRefGoogle Scholar
  92. 92.
    M. Fu, F. Ehrat, Y. Wang, K.Z. Milowska, C. Reckmeier, A.L. Rogach, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett. 15, 6030–6035 (2015)CrossRefGoogle Scholar
  93. 93.
    G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010)CrossRefGoogle Scholar
  94. 94.
    R.G. Ryan, A. Stacey, K.M. O’Donnell, T. Ohshima, B.C. Johnson, L.C.L. Hollenberg, P. Mulvaney, D.A. Simpson, Impact of surface functionalisation on the quantum coherence of nitrogen vacancy centres in nanodiamond. ACS Appl. Mater. Interfaces (2018).  https://doi.org/10.1021/acsami.7b19238
  95. 95.
    F. Maier, M. Riedel, B. Mantel, J. Ristein, L. Ley, Origin of surface conductivity in diamond. Phys. Rev. Lett. 85, 3472–3475 (2000)Google Scholar
  96. 96.
    C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, J. Twamley, L.J. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau, Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5, 345–349 (2010)CrossRefGoogle Scholar
  97. 97.
    A.M. Vervald, S.A. Burikov, O.A. Shenderova, N. Nunn, D.O. Podkopaev, I.I. Vlasov, T.A. Dolenko, Relationship between fluorescent and vibronic properties of detonation nanodiamonds and strength of hydrogen bonds in suspensions. J. Phys. Chem. C 120, 19375–19383 (2016)CrossRefGoogle Scholar
  98. 98.
    A.A. Khomich, O.S. Kudryavtsev, T.A. Dolenko, A.A. Shiryaev, A.V. Fisenko, V.I. Konov, I.I. Vlasov, Anomalous enhancement of nanodiamond luminescence upon heating. Laser Phys. Lett. 14, 025702 (2017)CrossRefGoogle Scholar
  99. 99.
    V. Petráková, M. Nesladek, A. Taylor, Luminescence properties of engineered nitrogen vacancy centers in a close surface proximity. Phys. Status Solidi A 208(9), 2051–2056 (2011)CrossRefGoogle Scholar
  100. 100.
    L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, P. Bergonzo, S. Perruchas, T. Gacoin, M. Chaigneau, H.-C. Chang, V. Jacques, J.-F. Roch, Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys. Rev. B Condens. Matter 82, 115449 (2010)Google Scholar
  101. 101.
    A.N. Newell, D.A. Dowdell, D.H. Santamore, Surface effects on nitrogen vacancy centers neutralization in diamond. J. Appl. Phys. 120, 185104 (2016)CrossRefGoogle Scholar
  102. 102.
    M.V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J.A. Garrido, Chemical control of the charge state of nitrogen-vacancy centers in diamond. Phys. Rev. B Condens. Matter 83, 081304 (2011)CrossRefGoogle Scholar
  103. 103.
    M. Kaviani, P. Deak, B. Aradi, T. Frauenheim, J.-P. Chou, A. Gali, Proper surface termination for luminescent near-surface NV centers in diamond. Nano Lett. 14(8), 4772–4777 (2014)CrossRefGoogle Scholar
  104. 104.
    A. Khalid, K. Chung, R. Rajasekharan, D.W.M. Lau, T.J. Karle, B.C. Gibson, S. Tomljenovic-Hanic, Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification. Sci. Rep. 5, 11179 (2015)CrossRefGoogle Scholar
  105. 105.
    J. Xiao, P. Liu, L. Li, G. Yang, Fluorescence origin of nanodiamonds. J. Phys. Chem. C 119, 2239–2248 (2015)CrossRefGoogle Scholar
  106. 106.
    V. Petrakova, I. Rehor, J. Stursa, M. Ledvina, M. Nesladeka, P. Cigler, Charge-sensitive fluorescent nanosensors created from nanodiamonds. Nanoscale 7, 12307 (2015)CrossRefGoogle Scholar
  107. 107.
    P. Galar, J. Čermák, P. Malý, A. Kromka, B. Rezek, Electrochemically grafted polypyrrole changes photoluminescence of electronic states inside nanocrystalline diamond. J Appl. Phys. 116, 223103 (2014)Google Scholar
  108. 108.
    M. Ohtani, P.V. Kamat, S. Fukuzumi, Supramolecular donor-acceptor assemblies composed of carbon nanodiamond and porphyrin for photoinduced electron transfer and photocurrent generation. J. Mater. Chem. 20, 582–587 (2010)Google Scholar
  109. 109.
    S. Zhu, J. Shao, Y. Song, X. Zhao, J. Du, L. Wang, H. Wang, K. Zhang, J. Zhang, B. Yang, Investigating the surface state of graphene quantum dots. Nanoscale 7, 7927–7933 (2015)CrossRefGoogle Scholar
  110. 110.
    O. Shenderova, S. Hens, I. Vlasov, S. Turner, Y.-G. Lu, G. Van Tendeloo, A. Schrand, S.A. Burikov, T.A. Dolenko, Carbon-dot-decorated nanodiamonds. Part. Part. Syst. Charact. 31, 580–590 (2014)CrossRefGoogle Scholar
  111. 111.
    U. Maitra, A. Jain, S.J. George, C.N.R. Rao, Tunable fluorescence in chromophore-functionalized nanodiamond induced by energy transfer. Nanoscale 3, 3192–3197 (2013)CrossRefGoogle Scholar
  112. 112.
    E. Perevedentseva, N. Melnik, C.-Y. Tsai, Y.-C. Lin, M. Kazaryan, C.-L. Cheng, Effect of surface adsorbed proteins on the photoluminescence of nanodiamond. J. Appl. Phys. 109, 034704 (2011)CrossRefGoogle Scholar
  113. 113.
    K.S. Subrahmanyam, P. Kumar, A. Nag, C.N.R. Rao, Blue light emitting graphene-based materials and their use in generating white light. Solid State Commun. 150(37–38), 1774–1777 (2010)CrossRefGoogle Scholar
  114. 114.
    M.-F. Weng, S.-Y. Chiang, N.-S. Wang, H. Niu, Fluorescent nanodiamonds for specifically targeted bioimaging. Diam. Relat. Mater. 18, 587–591 (2009)CrossRefGoogle Scholar
  115. 115.
    Z. Wang, C. Xu, C. Liu, Surface modification and intrinsic green fluorescence emission of a detonation nanodiamond. Mater. Chem. C 1, 6630 (2013)CrossRefGoogle Scholar
  116. 116.
    T. Zheng, F.P. Martínez, I.M. Storm, W. Rombouts, J. Sprakel, R. Schirhagl, R. de Vries, Recombinant protein polymers for colloidal stabilization and improvement of cellular uptake of diamond nanosensors. Anal. Chem. 89(23), 12812–12820 (2017)CrossRefGoogle Scholar
  117. 117.
    B.R. Smith, D. Gruber, T. Plakhotnik, The effects of surface oxidation on luminescence of nano diamonds. Diam. Relat. Mater. 19, 314 (2010)CrossRefGoogle Scholar
  118. 118.
    L.A. Stewart, C. Bradac, J. M. Dawes, M. J. Steel, J. R. Rabeau, M.J. Withford, Characterization of emission lifetime of nitrogen-vacancy centres in Nanodiamonds Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), IEEE JWF24 (2010)Google Scholar
  119. 119.
    S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, A. Zaitsev, Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks. New J. Phys. 13, 035024 (2011)CrossRefGoogle Scholar
  120. 120.
    J.-H. Hsu, W.-D. Su, K.-L. Yang, Y.-K. Tzeng, H.-C. Chang, Nonblinking green emission from single H3 color centers in nanodiamonds. Appl. Phys. Lett. 98, 193116 (2011)CrossRefGoogle Scholar
  121. 121.
    J. Mona, E. Perevedentseva, A. Karmenyan, H.-M. Liou, T.-Y. Kang, C.-L. Cheng, Tailoring of structure, surface, and luminescence properties of nanodiamonds using rapid oxidative treatment. J. Appl. Phys. 113, 114907 (2013)CrossRefGoogle Scholar
  122. 122.
    J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P.A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P.R. Hemmer, F. Jelezko, J. Wrachtrup, Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959–1965 (2009)CrossRefGoogle Scholar
  123. 123.
    J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P.R. Hemmer, F. Reinhard, J. Wrachtrup, Highly efficient FRET from a single Nitrogen-vacancy center in nanodiamonds to a single organic molecule. ACS Nano 5, 7893 (2011)CrossRefGoogle Scholar
  124. 124.
    R. Fudala, S. Raut, B.P. Maliwal, T.W. Zerda, I. Gryczynski, E. Simanek, J. Borejdo, R. Rich, I. Akopova, Z. Gryczynski, FRET enhanced fluorescent nanodiamonds. Curr. Pharm. Biotechnol. 14, 1127 (2013)CrossRefGoogle Scholar
  125. 125.
    C.D. Geddes, J.R. Lakowicz, Metal-enhanced fluorescence. J. Fluoresc. 12(2), 121–129 (2002)CrossRefGoogle Scholar
  126. 126.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys. Chem. B 107, 668–677 (2003)CrossRefGoogle Scholar
  127. 127.
    J.R. Lakowicz, Plasmonics in biology and plasmon controlled fluorescence. Plasmonics 1, 5–33 (2006)CrossRefGoogle Scholar
  128. 128.
    P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)CrossRefGoogle Scholar
  129. 129.
    E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)CrossRefGoogle Scholar
  130. 130.
    Y. Chi, G. Chen, F. Jelezko, E. Wu, H. Zeng, Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film. IEEE Photonics Technol. Lett. 23(6), 374–376 (2011)CrossRefGoogle Scholar
  131. 131.
    T.S. Lim, C.C. Fu, K.C. Lee, H.Y. Lee, K. Chen, W.F. Cheng, W.W. Pai, H.C. Chang, W. Fann, Fluorescence enhancement and lifetime modification of single nanodiamonds near a nanocrystalline silver surface. Phys. Chem. Chem. Phys. 11, 1508–1514S (2009)CrossRefGoogle Scholar
  132. 132.
    S. Schietinger, M. Barth, T. Aichele, O. Benson, Plasmonenhanced single photon emission from a nanoassembled metaldiamond hybrid structure at room temperature. Nano Lett 9(4), 1694–1698 (2009)Google Scholar
  133. 133.
    D. Zhang, Q Zhao, J. Zang, Y.-J. Lu, L. Dong, C.-X. Shan, Luminescent hybrid materials based on nanodiamonds. Carbon 127, 170–176 (2018)Google Scholar
  134. 134.
    J. Gong, N. Steinsultz, M. Ouyang, Nanodiamond-based nanostructures for coupling nitrogen-vacancy centers to metal nanoparticles and semiconductor quantum dots. Nat. Comm. 7, 11820 (2016)CrossRefGoogle Scholar
  135. 135.
    A. Albrecht, G. Koplovitz, A. Retzker, F. Jelezko, S. Yochelis, D. Porath, Y. Nevo, O. Shoseyov, Y. Paltiel, M.B. Plenio, Self-assembling hybrid diamond–biological quantum devices. New J. Phys. 16, 093002 (2014)CrossRefGoogle Scholar
  136. 136.
    D.-K. Lee, T. Kee, Z. Liangd, D. Hsiou, D. Miya, B. Wu, E. Osawa, E.K.-H. Chow, E.C. Sungi, M.K. Kang, D. Ho, Clinical validation of a nanodiamond-embedded thermoplastic biomaterial. Proc. Natl. Acad. Sci. U.S.A. 114(45), E9445–E9454 (2017)CrossRefGoogle Scholar
  137. 137.
    T.-K. Ryu, R.-H. Kang, K.-Y. Jeong, D.-R. Jun, J.-M. Koh, D. Kim, S.K. Bae, S.-W. Choi, Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment. J. Control. Release 232, 152–160 (2016)CrossRefGoogle Scholar
  138. 138.
    G. Xi, E. Robinson, B. Mania-Farnell, E.F. Vanin, K.-W. Shim, T. Takao, E.V. Allender, C.S. Mayanil, M.B. Soares, D. Ho, T. Tomita, Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomed. Nanotechnol. Biol. Med. 10, 381–391 (2014)Google Scholar
  139. 139.
    T.-B. Toh, D.-K. Lee, W. Hou, L.N. Abdullah, J. Nguyen, D. Ho, E.K.-H. Chow, Nanodiamond−Mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol. Pharm. 11, 2683–2691 (2014)CrossRefGoogle Scholar
  140. 140.
    O. Shimoni, B. Shi, P.A. Adlard, A.I. Bush, Delivery of fluorescent nanoparticles to the brain. J. Mol. Neurosci. 60(3), 405–409 (2016)CrossRefGoogle Scholar
  141. 141.
    J. Whitlow, S. Pacelli, P. Arghya, Multifunctional nanodiamonds in regenerative medicine: recent advances and future directions. J. Control. Release 261, 62–86 (2017)CrossRefGoogle Scholar
  142. 142.
    T. Meinhardt, D. Lang, H. Dill, A. Krueger, Pushing the functionality of diamond nanoparticles to new horizons: orthogonally functionalized nanodiamond using click chemistry. Adv. Funct. Mater. 21, 494–500 (2011)CrossRefGoogle Scholar
  143. 143.
    S. Haziz, N. Mohan, Y. Loe-Mie, A.-M. Lepagnol-Bestel, S. Massou, M.-P. Adam, X. Loc Le, J. Viard, C. Plancon, R. Daudin, P. Koebel, E. Dorard, C. Rose, F.-J. Hsieh, C.-C. Wu, B. Potier, Y. Herault, C. Sala, A. Corvin, B. Allinquant, H.-C. Chang, F. Treussart, M. Simonneau, Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nat. Nanotechnol. 12(4), 322–328 (2017)Google Scholar
  144. 144.
    R.A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, D. Ho, Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30, 5720–5728 (2009)CrossRefGoogle Scholar
  145. 145.
    A.H. Smith, E.M. Robinson, X.Q. Zhang, E.K. Chow, Y. Lin, E. Osawa, J. Xi, D. Ho, Triggered release of therapeutic antibodies from nanodiamond complexes. Nanoscale 3(7), 2844–2848 (2011)CrossRefGoogle Scholar
  146. 146.
    V.N. Mochalin, A. Pentecost, X.-M. Li, I. Neitzel, M. Nelson, C. Wei, T. He, F. Guo, Y. Gogotsi, Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol. Pharm. 10, 3728–3735 (2013)CrossRefGoogle Scholar
  147. 147.
    G. Jarre, S. Heyer, E. Memmel, T. Meinhardt, A. Krueger, Synthesis of nanodiamond derivatives carrying amino functions and quantification by a modified Kaiser test. Beilstein J. Org. Chem. 10, 2729–2737 (2014)CrossRefGoogle Scholar
  148. 148.
    K.-K. Liu, W.-W. Zheng, C.-C. Wang, Y.-C. Chiu, C.-L. Cheng, Y.-S. Lo, C. Chen, J.-I. Chao, Covalent linkage of nanodiamond paclitaxel for drug delivery and cancer therapy. Nanotechnology 21, 315106 (2010)Google Scholar
  149. 149.
    O.A. Shenderova, G.E. McGuire, Science and engineering of nanodiamond particle surfaces for biological applications. Biointerphases 10, 030802 (2015)CrossRefGoogle Scholar
  150. 150.
    V. Petrakova, V. Benson, M. Buncek, A. Fiserova, M. Ledvina, J. Stursa, P. Cigler, M. Nesladek, Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. Nanoscale 8, 12002 (2016)Google Scholar
  151. 151.
    Y.-C. Lin, L.-W. Tsai, E. Perevedentseva, H.-H. Chang, C.-H. Lin, D.-S. Sun, A.E. Lugovtsov, A. Priezzhev, J. Mona, C.-L. Cheng, The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro. J. Biomed. Optics 17(10), 101512 (2012)CrossRefGoogle Scholar
  152. 152.
    A. Chatterjee, E. Perevedentseva, M. Jani, C.-Y. Cheng, Y.-S. Ye, P.-H. Chung, C.-L. Cheng, Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli. J. Biomed. Optics 20(5), 051014 (2015)Google Scholar
  153. 153.
    J. Wehling, R. Dringen, R.N. Zare, M. Maas, K. Rezwan, Bactericidal activity of partially oxidized nanodiamonds. ACS Nano 8(6), 6475–6483 (2014)CrossRefGoogle Scholar
  154. 154.
    Z. Zhu, An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 9, 25 (2017).  https://doi.org/10.1007/s40820-017-0128-6CrossRefGoogle Scholar
  155. 155.
    M. Tuerhong, Y. Xu, X.-B. Yin, Review on carbon dots and their applications. Chinese J Anal. Chem. 45(1), 139–150 (2017)CrossRefGoogle Scholar
  156. 156.
    K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012)CrossRefGoogle Scholar
  157. 157.
    D. Fu, L.-J. Li, Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene. Nano Rev. 1, 5354 (2010)CrossRefGoogle Scholar
  158. 158.
    Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.-Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006)Google Scholar
  159. 159.
    L. Wang, Y. Yin, A. Jain, H.S. Zhou, Aqueous phase synthesis of highly luminescent, nitrogen-doped carbon dots and their application as bioimaging agents. Langmuir 30, 14270 (2014)Google Scholar
  160. 160.
    S. Liu, N. Zhao, Z. Cheng, H. Liu, Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale 7, 6836–6842 (2015)CrossRefGoogle Scholar
  161. 161.
    Z.S. Qian, X.Y. Shan, L.J. Chai, J.J. Ma, J.R. Chen, H. Feng, DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens. Bioelectron. 60, 64–70 (2014)CrossRefGoogle Scholar
  162. 162.
    N. Prabhakar, T. Näreoja, E. von Haartman, D.Ş. Karaman, S.A. Burikov, T.A. Dolenko, T. Deguchi, V. Mamaeva, P.E. Hänninen, I.I. Vlasov, O.A. Shenderova, J.M. Rosenholm, Functionalization of graphene oxide nanostructures improves photoluminescence and facilitates their use as optical probes in preclinical imaging. Nanoscale 7, 10410 (2015)CrossRefGoogle Scholar
  163. 163.
    R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014)CrossRefGoogle Scholar
  164. 164.
    A. Ermakova, G. Pramanik, J.-M. Cai, G. Algara-Siller, U. Kaiser, T. Weil, Y.-K. Tzeng, H.C. Chang, L.P. McGuinness, M.B. Plenio, B. Naydenov, F. Jelezko, Detection of a few metallo- protein molecules using color centers in nanodiamonds. Nano Lett. 13, 3305–3309 (2013)CrossRefGoogle Scholar
  165. 165.
    A. Albrecht, G. Koplovitz, A. Retzker, F. Jelezko, S. Yochelis, D. Porath, Y. Nevo, O. Shoseyov, Y. Paltiel, M.B. Plenio, Self-assembling hybrid diamond–biological quantum devices. New J. Phys. 16, 093002 (2014)CrossRefGoogle Scholar
  166. 166.
    A. Ajoy, U. Bissbort, M.D. Lukin, R.L. Walsworth, P. Cappellaro, Atomic-scale nuclear spin imaging using quantum-assisted sensors in diamond. Phys. Rev. X 5, 011001 (2015)Google Scholar
  167. 167.
    J.M. Cai, F. Jelezko, M.B. Plenio, Hybrid sensor based on colour centres in diamond and piezoactive layers. Nat. Commun. 5, 4065 (2014)CrossRefGoogle Scholar
  168. 168.
    W. Zhang, K. Patel, A. Schexnider, S. Banu, A.D. Radadia, Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization. ASC Nano 8(2), 1419–1428 (2014)CrossRefGoogle Scholar
  169. 169.
    M. Börsch, R. Reuter, G. Balasubramanian, R. Erdmann, F. Jelezko, J. Wrachtrup, Fluorescent nanodiamonds for FRET-based monitoring of a single biological nanomotor FoF1-ATP synthase. Proc. SPIE 7183, 71832N (2009)CrossRefGoogle Scholar
  170. 170.
    M. Borsch, J. Wrachtrup, Fluorescent nanodiamonds for FRET-based monitoring of a single biological nanomotor FoF1-ATP synthase. Chem. Phys. Chem. 12(3), 542 (2011)CrossRefGoogle Scholar
  171. 171.
    H. Pinto, R. Jones, D.W. Palmer, J.P. Goss, P.R. Briddon, S. Öberg, Theory of the surface effects on the luminescence of the NV defect in nanodiamond. Phys. Status Solidi A 208, 2045 (2011)CrossRefGoogle Scholar
  172. 172.
    W.W.-W. Hsiao, Y.Y. Hui, P.-C. Tsai, H.-C. Chang, Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc. Chem. Res. 49, 400–407 (2016)CrossRefGoogle Scholar
  173. 173.
    M.E. Robinson, J.D. Ng, H. Zhan, J.T. Buchman, O.A. Shenderova, C.L. Haynes, Z. Ma, R.H. Goldsmith, R.J. Hamers, Optically detected magnetic resonance for selective imaging of diamond nanoparticles. Anal. Chem. 90, 769–776 (2018)CrossRefGoogle Scholar
  174. 174.
    G. Balasubramanian, I.Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P.R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wrachtrup, Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008)CrossRefGoogle Scholar
  175. 175.
    F. Dolde, H. Fedder, M.W. Doherty, T. Nobauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, C.L. Hollenberg, F. Jelezko, J. Wrachtrup, Electric-field sensing using single diamond spins. Nat. Phys. 7, 459–463 (2011)Google Scholar
  176. 176.
    M. Alkanti, L. Jiang, R. Brick, P. Hemmer, M. Scully, Nanometer-scale luminescent thermometry in bovine embryos. Opt. Lett. 42(23), 4812–4815 (2017)CrossRefGoogle Scholar
  177. 177.
    G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin, Nanometer scale thermometry in a living cell. Nature 500(7460), 54–58 (2013)CrossRefGoogle Scholar
  178. 178.
    D.A. Simpson, E. Morrisroe, J.M. McCoey, A.H. Lombard, D.C. Mendis, F. Treussart, L.T. Hall, S. Petrou, L.C.L. Hollenberg, Non-neurotoxic nanodiamond probes for intraneuronal temperature mapping. ACS Nano 11, 12077–12086 (2017)CrossRefGoogle Scholar
  179. 179.
    M.S. Purdey, P.K. Capon, B.J. Pullen, P. Reineck, N. Schwarz, P.J. Psaltis, S.J. Nicholls, B.C. Gibson, A.D. Abell, An organic fluorophore-nanodiamond hybrid sensor for photostable imaging and orthogonal, on-demand biosensing. Sci. Rep. 7, 15967 (2017)CrossRefGoogle Scholar
  180. 180.
    X. Wang, M. Gu, T.B. Toh, N.L. Binti Abdullah, E.K.-H. Chow, Stimuli-responsive nanodiamond-based biosensor for enhanced metastatic tumor site detection. SLAS Technol., 1–13 (2017)Google Scholar
  181. 181.
    L.P. Neukirch, J. Gieseler, R. Quidant, L. Novotny, A.N. Vamivakas, Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. Opt. Lett. 38(16), 2976–2979 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ashek-I-Ahmed
    • 1
  • Elena V. Perevedentseva
    • 1
    • 2
  • Artashes Karmenyan
    • 1
  • Chia-Liang Cheng
    • 1
    Email author
  1. 1.Department of PhysicsNational Dong Hwa UniversityHualienTaiwan
  2. 2.P.N. Lebedev Physics Institute of Russian Academy of ScienceMoscowRussia

Personalised recommendations