Advertisement

Diamond Nanowires: Theoretical Simulation and Experiments

  • Yuan Yu
  • Jinfang ZhiEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 121)

Abstract

The unique physicochemical properties of diamond nanowires, such as negative electron affinity, chemical inertness, high Young’s modulus, the highest hardness and room-temperature thermal conductivity, etc., have generated wide interest for their use as fillers in nanocomposites, as light detectors and emitters, as substrates for nanoelectronic devices, as tips for scanning probe microscopy as well as for sensing applications. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging, due to its high hardness and chemical inertness. However, many efforts have been made to realize various structures of DNWs both theoretically and experimentally. Ab initio modeling of DNW structures including dodecahedral, cubic and cylindrical shapes were theoretically studied. The density functional theory (DFT) study of the surface structure of diamond nanowires with different morphology and cross-sections were also carried out. A number of experimental results have also been reported in fabrication of DNWs with different shapes. In this chapter, we present a comprehensive, up-to-date review for the diamond nanowires, wherein we will give a discussing for their synthesis along with their structures, properties and applications both from theoretical simulation and experiments.

Keywords

Diamond Nanomaterials Diamond nanowires Diamond nanorods Reactive ion etching Plasma Electron field emission Biosensor 

Notes

Acknowledgements

The authors appreciate the supports of the International Science & Technology Cooperation Program of China (no. 2013DFG50150), the Natural Foundation of Sciences of the People’s Republic of China (Grant no. 21,175,144, and 20,903,111) and the Key Project of Beijing Natural Science Foundation (Grant No. 2,120,002).

References

  1. 1.
    V.V. Brazhkin, Interparticle interaction in condensed media: some elements are ‘more equal than others’. Phys.-Usp. 52, 369–376 (2009)CrossRefGoogle Scholar
  2. 2.
    R.F. Davis, Diamond Films and Coatings (Noyes Publications, New Jersey, 1992)Google Scholar
  3. 3.
    R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108, 2646–2687 (2008)CrossRefGoogle Scholar
  4. 4.
    W. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J.E. Gerbi, D.M. Gruen, T. Knickerbocker, T.L. Lasseter, J.N. Russell, J. Smith, R.J. Hamers, DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nature Mater. 1, 253–257 (2002)CrossRefGoogle Scholar
  5. 5.
    Y. Zhou, J. Zhi, Y. Zou, W. Zhang, S.T. Lee, Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode. Anal. Chem. 80, 4141–4146 (2008)CrossRefGoogle Scholar
  6. 6.
    T. Watanabe, T.A. Ivandini, Y. Makide, A. Fujishima, Y. Einaga, Selective detection method derived from a controlled diffusion process at metal-modified diamond electrodes. Anal. Chem. 78, 7857–7860 (2006)CrossRefGoogle Scholar
  7. 7.
    A. Suzuki, T.A. Ivandini, K. Yoshimi, A. Fujishima, G. Oyama, T. Nakazato, N. Hattori, S. Kitazawa, Y. Einaga, Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal. Chem. 79, 8608–8615 (2007)CrossRefGoogle Scholar
  8. 8.
    H. Gu, X.D. Su, K.P. Loh, Electrochemical impedance sensing of DNA hybridization on conducting polymer film-modiried diamond. J. Phys. Chem. B 109, 13611–13618 (2005)CrossRefGoogle Scholar
  9. 9.
    W. Yang, J.E. Butler, J.N. Russell, R.J. Hamers, Interfacial electrical properties of DNA-modified diamond thin films: Intrinsic response and hybridization-induced field effects. Langmuir 20, 6778–6787 (2004)CrossRefGoogle Scholar
  10. 10.
    B. Rezek, D. Shin, C.E. Nebel, Properties of hybridized DNA arrays on single-crystalline undoped and boron-doped (100) diamonds studied by atomic force microscopy in electrolytes. Langmuir 23, 7626–7633 (2007)CrossRefGoogle Scholar
  11. 11.
    J.L. Davidson, R. Ramesham, C. Ellis, J. Electrochem. Soc. 137, 3206 (1990)CrossRefGoogle Scholar
  12. 12.
    B.J.M. Hausmann, M. Khan, Y. Zhang, T.M. Babinec, K. Martinick, M. McCutcheon, P.R. Hemmer, M. Loncar, Diam. Relat. Mater. 19, 621 (2010)CrossRefGoogle Scholar
  13. 13.
    C.E. Nebel, N. Yang, H. Uetsuka, E. Osawa, N. Tokuda, O. Williams, Diam. Relat. Mater. 18, 910 (2009)CrossRefGoogle Scholar
  14. 14.
    T.M. Babinec, B.J.M. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer, M. Loncar, Nat. Nanotechnol. 5, 195 (2010)CrossRefGoogle Scholar
  15. 15.
    I. Friedler, C. Sauvan, J.P. Hugonin, P. Lalanne, J. Claudon, J.M. Gérard, Opt. Express 17, 2095 (2009)CrossRefGoogle Scholar
  16. 16.
    Y. Tao, C.L. Degen, Single-crystal diamond nanowire tips for ultrasensitive force microscopy. Nano Lett. 15, 7893−7897 (2015)Google Scholar
  17. 17.
    A.S. Barnard, S.P. Russo, I.K. Snook, Nano Lett. 3, 1323 (2003)CrossRefGoogle Scholar
  18. 18.
    A.S. Barnard, S.P. Russo, I.K. Snook, Surf. Sci. 538, 204 (2003)CrossRefGoogle Scholar
  19. 19.
    G.A. Denu, Z.C. Liu, J. Fu, H. Wang, X: A finite element analysis of the effects of geometrical shape on the elastic properties of chemical vapor deposited diamond nanowire. AIP Adv. 7, 015025 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Shiomi, Reactive ion etching of diamond in O-2 and CF4 plasma, and fabrication of porous diamond for field emitter cathodes. Jpn. J. Appl. Phys. 36, 7745–7748 (1997)CrossRefGoogle Scholar
  21. 21.
    H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, A. Fujishima, Fabrication of a Nanostructured Diamond Honeycomb Film. Adv. Mater. 12, 444–447 (2000)CrossRefGoogle Scholar
  22. 22.
    R. Arenal, P. Bruno, D.J. Miller, M. Bleuel, J. Lal, D.M. Gruen, Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films. Phys. Rev. B 75, 195431 (2007)CrossRefGoogle Scholar
  23. 23.
    R. Arenal, G. Montagnac, P. Bruno, D.M. Gruen, Multiwavelength Raman spectroscopy of diamond nanowires present in n-type ultrananocrystalline films. Phys. Rev. B 76, 245316 (2007)CrossRefGoogle Scholar
  24. 24.
    I. Vlasov et al., Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition. Adv. Mater. 19, 4058–4062 (2007)CrossRefGoogle Scholar
  25. 25.
    K. Panda, K.J. Sankaran, B.K. Panigrahi, N.-H. Tai, I.N. Lin, Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films. ACS Appl. Mater. Interfaces 6, 8531–8541 (2014)CrossRefGoogle Scholar
  26. 26.
    K.J. Sankaran et al., Structural and electrical properties of conducting diamond nanowires. ACS Appl. Mater. Interfaces 5, 1294–1301 (2013)CrossRefGoogle Scholar
  27. 27.
    I.N. Kholmanov et al., Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 12, 5679–5683 (2012)CrossRefGoogle Scholar
  28. 28.
    M. Shellaiah, T.H. Chen, T. Simon, L.C. Li, K.W. Sun, F.H. Ko, An Affordable Wet Chemical Route to Grow Conducting Hybrid Graphite-Diamond Nanowires: Demonstration by A Single Nanowire Device. Sci. Reports 7, 11243 (2017)CrossRefGoogle Scholar
  29. 29.
    Q.X. Liu, C.X. Wang, S.W. Li, J.X. Zhang, G.W. Yang, Nucleation stability of diamond nanowires inside carbon nanotubes: A thermodynamic approach. Carbon 42, 629–633 (2004)CrossRefGoogle Scholar
  30. 30.
    A.S. Barnard, S.P. Russo, I.K. Snook, Surface structure of cubic diamond nanowires. Surf. Sci. 538, 204–210 (2003)CrossRefGoogle Scholar
  31. 31.
    C. Terashima, K. Arihara, S. Okazaki, T. Shichi, D.A. Tryk, T. Shirafuji, N. Saito, O. Takai, A. Fujisima, Fabrication of vertically aligned diamond whiskers from highly boron-doped diamond by oxygen etching. ACS Appl. Mater. Interfaces 3, 177–182 (2011)CrossRefGoogle Scholar
  32. 32.
    N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned diamond nanowires for DNA sensing. Angew. Chem. Int. Ed. 47, 5183–5185 (2008)CrossRefGoogle Scholar
  33. 33.
    Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, K. Oura, Smooth and high-rate reactive ion etching of diamond. Diam. Relat. Mater. 11, 824–827 (2002)CrossRefGoogle Scholar
  34. 34.
    E.S. Baik, Y.J. Baik, S.W. Lee, D. Jeon, Fabrication of diamond nano-whiskers. Thin Solid Films 377–378, 295–298 (2000)CrossRefGoogle Scholar
  35. 35.
    W. Smirnov, A. Kriele, N. Yang, C.E. Nebel, Aligned diamond nano-wires: Fabrication and characterisation for advanced applications in bio- and electrochemistry. Diam. Relat. Mater. 19, 186–189 (2010)CrossRefGoogle Scholar
  36. 36.
    N. Yang, W. Smirnov, C.E. Nebel, Three-dimensional electrochemical reactions on tip-coated diamond nanowires with nickel nanoparticles. Electrochem. Commun. 27, 89–91 (2013)CrossRefGoogle Scholar
  37. 37.
    K. Wakui, Y. Yonezu, T. Aoki, M. Takeoka, K. Semba, Simple method for fabrication of diamond nanowires by inductively coupled plasma reactive ion etching. Jpn. J. Appl. Phys. 56(5), 058005 (2017)CrossRefGoogle Scholar
  38. 38.
    P. Subramanian, S. Kolagatla, S. Szunerits, Y. Coffinier, W.S. Yeap, K. Haenen, R. Boultherroub, A. Schechter, Atomc Force Microscopic and Raman Investigation of Boron-Doped Diamond Nanowire Electrodes and Their Activity toward Oxygen Reduction. J. Phys. Chem. C 121(6), 3397–3403 (2017)CrossRefGoogle Scholar
  39. 39.
    Q.Q. Jiang, W.X. Li, C.C. Tang, Y.C. Chang, T.T. Hao, X.Y. Pan, H.T. Ye, J.J. Li, C.Z. Gu, Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications. Chin. Phys. B 25(11), 118105 (2016)CrossRefGoogle Scholar
  40. 40.
    Q. Wang, Y. Coffinier, M.S. Li, R. Boukherroub, S. Szunerits, Light-triggered release of biomolecules from diamond nanowire electrodes. Langmuir 32, 6515–6523 (2016)CrossRefGoogle Scholar
  41. 41.
    C.J. Widmann, C. Giese, M. Wolfer, D. Brink, N. Heidrich, C.E. Nebel, Fabrication and characterization of single crystalline diamond nanopillars with NV-centers. Diam. Relat. Mater. 54, 2–8 (2015)CrossRefGoogle Scholar
  42. 42.
    L. Marcon, A. Addad, Y. Coffinier, R. Boukherroub, Cell micropatterning on superhydrophobic diamond nanowires. Acta Biomater. 9, 4585–4591 (2013)CrossRefGoogle Scholar
  43. 43.
    Q. Wang, P. Subramanian, M.S. Li, W.S. Yeap, K. Haenen, Y. Coffinier, R. Boukherroub, S. Szunerits, Non-enzymatic glucose sensing on long and short diamond nanowire electrodes. Electrochem. Commun. 34, 286–290 (2013)CrossRefGoogle Scholar
  44. 44.
    Q. Wang, A. Vasilescu, P. Subramanian, A. Vezeanu, V. Andrei, Y. Coffinier, M.S. Li, R. Boukherroub, Szunerits S: simultaneous electrochemical detection of tryptophan and tyrosine using boron-doped diamond and diamond nanowire electrodes. Electrochem. Commun. 35, 84–87 (2013)CrossRefGoogle Scholar
  45. 45.
    P. Subramanian, Y. Coffinier, D. Steinmüller-Nethl, J. Foord, R. Boukherroub, S. Szunerits, Diamond nanowires decorated with metallic nanoparticles: A novel electrical interface for the immobilization of histidinylated biomolecuels. Electrochim. Acta 110, 4–8 (2013)CrossRefGoogle Scholar
  46. 46.
    L.T. Sun, J.L. Gong, Z.Y. Zhu, D.Z. Zhu, Z.X. Wang, W. Zhang, J.G. Hu, Q.T. Li, Synthesis and characterization of diamond nanowires from carbon nanotubes. Diam. Relat. Mater. 14, 749–752 (2005)CrossRefGoogle Scholar
  47. 47.
    L.T. Sun, J.L. Gong, D.Z. Zhu, Z.Y. Zhu, S.X. He, Diamond nanorods from carbon naotubes. Adv. Mater. 16, 1849–1853 (2004)CrossRefGoogle Scholar
  48. 48.
    N. Dubrovinskaia, L. Dubrovinsky, Aggregated diamond nanorods, the densest and least compressible form of carbon. Appl. Phys. Lett. 87, 083106 (2005)CrossRefGoogle Scholar
  49. 49.
    C.H. Hsu, S.G. Cloutier, S. Palefsky, J. Xu, Synthesis of diamond nanowires using atmospheric-pressure chemical vapor deposition. Nano Lett. 10, 3272–3276 (2010)Google Scholar
  50. 50.
    C.H. Hsu, J. Xu, Diamond nanowire—a challenge from extremes. Nanoscale 4, 5293–5299 (2012)CrossRefGoogle Scholar
  51. 51.
    D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Muller-Sebert, P. Gentile S. Pouget, C.E. Nebel, G. Bidan, Powering electrodes for high performance aqueous micro-supercapacitors: diamond-coated silicon nanowires operating at a wide cell voltage of 3 V. Electrochim. Acta 242, 173–179 (2017)Google Scholar
  52. 52.
    J. Shalini, K.J. Sankaran, C.L. Dong, C.Y. Lee, N.H. Tai, I.N. Lin, Insitu detection of dopamine using nitrogen incorporated diamond nanowire electrode. Nanoscale 5, 1159–1167 (2013)CrossRefGoogle Scholar
  53. 53.
    K.J. Sankaran, Y.F. Lin, W.B. Jian, H.C. Chen, K. Panda, B. Sundaravel, C.L. Dong, N.H. Tai, I.N. Lin, Structural and electrical properties of conducting diamond nanowires. ACS Appl. Mater. Interfaces 5, 1294–1301 (2013)CrossRefGoogle Scholar
  54. 54.
    K.J. Sankaran, N. Kumar, H.C. Chen, C.L. Dong, A. Bahuguna, S. Dash, A.K. Tyagi, C.Y. Lee, N.H. Tai, I.N. Lin, Sci. Adv. Mater. 5, 687–698 (2013)CrossRefGoogle Scholar
  55. 55.
    K. Panda, K.J. Sankaran, B.K. Panigrahi, N.H. Tai, I.N. Lin, Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films. ACS Appl. Mater. Interfaces 6, 8531–8541 (2014)CrossRefGoogle Scholar
  56. 56.
    G.S. Oehrlein, Reactive-ion etching. Phys. Today 39, 26–33 (1986)CrossRefGoogle Scholar
  57. 57.
    C.Y. Li, Y. Hatta, Preparation of diamond whiskers using Ar/O2 plasma etching. Diam. Relat. Mater. 14, 1780–1783 (2005)CrossRefGoogle Scholar
  58. 58.
    M.Y. Liao, S. Hishita, E. Watanabe, S. Koizumi, Y. Koide, Suspended single-crystal diamond nanowires for high-performance nanoelectromechanical switches. Adv. Mater. 22, 5393–5397 (2010)CrossRefGoogle Scholar
  59. 59.
    Y. Tzeng, J. Wei, J.T. Woo, W. Lanford, Freestanging single-crystalline chemical vapor deposited diamond films. Appl. Phys. Lett. 63, 2216–2218 (1993)CrossRefGoogle Scholar
  60. 60.
    E.S. Baik, Y.J. Baik, D. Jeon, Aligned diamond nanowhiskers. J. Mater. Res. 15, 923–926 (2000)CrossRefGoogle Scholar
  61. 61.
    Y.S. Zou, T. Yang, W.J. Zhang, Y.M. Chong, B. He, I. Bello, S.T. Lee, Fabrication of diamond nanopillars and their arrays. Appl. Phys. Lett. 92, 053105 (2008)CrossRefGoogle Scholar
  62. 62.
    W. Smirnov, A. Kriele, R. Hoffmann, E. Sillero, J. Hees, O.A. Williams, N. Yang, C. Kranz, C.E. Nebel, Diamond-modified afm probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes. Anal. Chem. 83, 4936–4941 (2011)CrossRefGoogle Scholar
  63. 63.
    W. Janssen, E. Gheeraert, Dry etching of diamond nanowires using self-organized metal droplet masks. Diam. Relat. Mater. 20, 389–394 (2011)CrossRefGoogle Scholar
  64. 64.
    S. Okuyama, Matsushita SI (Preparation of periodic microstructured diamond surfaces. chemistry letters, Fujishima A, 2000), pp. 534–535Google Scholar
  65. 65.
    S. Okuyama, S.I. Matsushita, A. Fujishima, Periodic submicrocylinder diamond surfaces using two-dimensional fine particle arrays. Langmuir 18, 8282–8287 (2002)CrossRefGoogle Scholar
  66. 66.
    B.J.M. Hausmann, M. Khan, Y. Zhang, T.M. Babinec, K. Martinick, M. McCutcheon, P.R. Hemmer, M. Loncar, Fabrication of diamond nanowires for quantum information processing applications. Diam. Relat. Mater. 19, 621–629 (2010)CrossRefGoogle Scholar
  67. 67.
    N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned nanowires from Boron-doped diamond. Nano Lett. 8, 3572–3576 (2008)CrossRefGoogle Scholar
  68. 68.
    N. Yang, H. Uetsuka, C.E. Nebel, Biofunctionalization of Vertically aligned diamond nanowires. Adv. Funct. Mater. 19, 887–893 (2009)CrossRefGoogle Scholar
  69. 69.
    N. Yang, H. Uetsuka, O.A. Williams, E. Osawa, N. Tokuda, C.E. Nebel, Vertically aligned diamond nanowires: fabrication, characterization, and application for DNA sensing. Phys. Status Solidi A 206, 2048–2056 (2009)CrossRefGoogle Scholar
  70. 70.
    N. Tokuda, H. Umezawa, T. Saito, K. Yamabe, H. Okushi, S. Yamasaki, Surface roughening of diamond (001) films during homoepitaxial growth in heavy boron doping. Diamond Relat. Mater. 16, 767–770 (2007)CrossRefGoogle Scholar
  71. 71.
    A. Kruger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Y. Vul, E. Osawa, Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon 43, 1722–1730 (2005)CrossRefGoogle Scholar
  72. 72.
    O.A. Williams, O. Douheret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi, Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445, 255–258 (2007)CrossRefGoogle Scholar
  73. 73.
    O.A. Williams, M. Daenen, J. Dhaen, K. Haenen, J. Maes, V.V. Moshchalkov, M. Nesladek, D.M. Gruen, Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond. Diam. Relat. Mater.15, 654–658 (2006)Google Scholar
  74. 74.
    M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. 24, 3624–3626 (2009)CrossRefGoogle Scholar
  75. 75.
    S. Szunerits, Y. Coffinier, E. Galopin, J. Brenner, Boukherroub R: Preparation of boron-doped diamond nanowires and their application for sensitive electrochemical detection of tryptophan. Electrochem. Commun. 12, 438–441 (2010)CrossRefGoogle Scholar
  76. 76.
    Y. Coffinier, S. Szunerits, H. Drobecq, M. Oleg, R. Boukherroub, Diamond nanowires for highly sensitive matrix-free mass spectrometry analysis of small molecules. Nanosacle 4, 231–238 (2012)CrossRefGoogle Scholar
  77. 77.
    Y. Coffinier, E. Galopin, S. Szunerits, R. Boukherroub, Preparation of superhydrophobic and oleophobic diamond nanograss arrays. J. Mater. Chem. 20, 10671–10675 (2010)CrossRefGoogle Scholar
  78. 78.
    P.S. Shah, T. Hanrath, K.P. Johnston, S.A. Korgel, Nanocrystal and nanowire synthesis and dispersibility in supercritical fluids. J. Phys. Chem. B 108, 9574–9587 (2004)CrossRefGoogle Scholar
  79. 79.
    Y. Wu, P. Yang, Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165–3166 (2001)CrossRefGoogle Scholar
  80. 80.
    S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Germanium nanowire growth below the eutectic temperature. Science 316, 729–732 (2007)CrossRefGoogle Scholar
  81. 81.
    J.L. Lensch-Falk, E.R. Hemesath, D.E. Perea, L.J. Lauhon, Alternative catalysts for VSS growth of silicon and germanium nanowires. J. Mater. Chem. 19, 849–857 (2009)CrossRefGoogle Scholar
  82. 82.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)CrossRefGoogle Scholar
  83. 83.
    H. Ringsdorf, B. Schlarb, J. Verzmer, Molecular architecture and function of polymeric oriented systems-models for the study of organization, surface recognition, and dynamics of biomembranes. Angew. Chem. Int. Ed. 27, 113–158 (1988)CrossRefGoogle Scholar
  84. 84.
    C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, M. Nath, Surfactant-assisted synthesis of semiconductor nanotubes and nanowires. Appl. Phys. Lett. 78, 1853–1855 (2001)CrossRefGoogle Scholar
  85. 85.
    Y. Yin, Y. Lu, Y. Sun, Y. Xia, Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett. 2, 427–430 (2002)CrossRefGoogle Scholar
  86. 86.
    P.W. May, CVD Diamond: A new technology for future. Endeavour 19, 101–106 (1995)CrossRefGoogle Scholar
  87. 87.
    S.S. Lee, O. Takai, H. Itoh, Uniform coating of CVD diamond on metallic wire substrates. J. Mater. Sci. 32, 2417–2422 (1997)CrossRefGoogle Scholar
  88. 88.
    G. Chollon, R. Naslain, C. Prentice, R. Shatwell, P. May, High temperature properties of SiC and diamond CVD-monofilaments. J. Eur. Ceram. Soc. 25, 1929–1942 (2005)CrossRefGoogle Scholar
  89. 89.
    V. Baranauskas, H.J. Ceragioli, A.C. Peterlevitz, A.F. Durrant, Development of tubes of micro-crystalline diamond and diamond-like carbon. Thin Solid Film 398, 250–254 (2001)CrossRefGoogle Scholar
  90. 90.
    M.K. Singh, E. Titus, J.C. Madaleno, G. Cabral, J. Gracio, Novel two-step method for synthesis of high-density nanocrystalline diamond fibers. Chem. Marer. 20, 1725–1732 (2008)Google Scholar
  91. 91.
    M.K. Singh, E. Titus, M.G. Willinger, J.C. Madaleno, J. Gracio, Microstructure and electron field emission study of diamond nanorod decorated a-SiO2 nanowires by microwave Ar–CH4/H2 plasma chemical vapor deposition with addition of N2. Diamond Relat. Mater. 18, 865–869 (2009)CrossRefGoogle Scholar
  92. 92.
    J.C. Madaleno, M.K. Singh, E. Titus, G. Cabral, J. Gracio, Electron field emission from patterned nanocrystalline diamond coated a-SiO2 micrometer-tip arrays. Appl. Phys. Lett. 92, 023113 (2008)CrossRefGoogle Scholar
  93. 93.
    D. Luo, L. Wu, J. Zhi, Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. ACS Nano 8, 2121–2128 (2009)CrossRefGoogle Scholar
  94. 94.
    D. Luo, L. Wu, J. Zhi, 2-D dimensional micro-network for boron-doped diamond film: fabrication and electrochemical sensing application. Chem. Commun. 46, 6488–6490 (2010)CrossRefGoogle Scholar
  95. 95.
    D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Muller-Sebert, P. Gentile, M. Boniface, D. Aldakov, B. Iliev, T.J.S. Schubert, C.E. Nebel, Designing 3D multihierarchical heteronanostructures for high-performance on-chip hybrid supercapacitors: poly(3,4-(ethylenedioxy)thiophene)-coated diamond/silicon nanowire electrodes in an aprotic ionic liquid. ACS Appl. Mater. Interfaces. 8, 18069–18077 (2016)CrossRefGoogle Scholar
  96. 96.
    D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Muller-Sebert, D. Gaboriau, P. Gentile, B. Iliev, T. Schubert, S. Sadki, G. Bidan, C.E. Nebel, A step forward into hierarchically nanostructured materials for high performance micro-supercapacitors: Diamond-coated SiNW electrodes in protic ionic liquid electrolyte. Electrochem. Commun. 63, 34–38 (2016)CrossRefGoogle Scholar
  97. 97.
    F. Gao,G. Lewes-Malandrakis, M.T. Wolfer, W. Müller-Sebert, P. Gentile, D. Aradilla,T. Schubert, C.E. Nebel, Diamond-coated silicon wires for supercapacitor applications in ionic liquids. Diam. Relat. Mater. 51, 1–6 (2015)Google Scholar
  98. 98.
    C.G. Granqvist, A. Andersson, O. Hundri, Spectrally selective surfaces of Ni-pigmented anodic Al2O3. Appl. Phys. Lett. 35, 268–270 (1979)CrossRefGoogle Scholar
  99. 99.
    C.A. Huber, T.E. Huber, M. Sadoqi, J.A. Lubin, S. Mannlis, C.B. Prater, Nanowire array composites. Science 263, 800–802 (1994)CrossRefGoogle Scholar
  100. 100.
    H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T.N. Rao, A. Fujishima, synthesis of well-aligned diamond nanocylinders. Adv. Mater. 13, 247–249 (2001)CrossRefGoogle Scholar
  101. 101.
    F. Keller, M.S. Hunter, D.L. Robinson, Structural features of oxide coatings on aluminium. J. Electrochem. Soc. 100, 411–419 (1953)CrossRefGoogle Scholar
  102. 102.
    H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by A two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)CrossRefGoogle Scholar
  103. 103.
    I.I. Vlasov, O.I. Lebedev, V.G. Ralchenko, E. Goovaerts, G. Bertoni, G.V. Tendeloo, V.I. Konov, Hybrid diamond –graphite nanowires produced by microwave plasma chemical vapor deposition. Adv. Mater. 19, 4058–4062 (2007)CrossRefGoogle Scholar
  104. 104.
    I.I. Vlasov, V.G. Ralchenko, E. Goovaerts, A.V. Saveliev, M.V. Kanzyuba, Bulk and surface-enhanced Raman spectroscopy of nitrogen-doped ultrananocrystalline diamond films. Phys. Status Solidi A Appl. Mater. Sci. 203, 3028–3035 (2006)Google Scholar
  105. 105.
    N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I.N. Lin, M. Chu, A. Stamboulis, Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. ACS Nano 3, 1032–1038 (2009)CrossRefGoogle Scholar
  106. 106.
    A.S. Barnard, I.K. Snook, Phase stability of nanocarbon in one dimension: nanotubes versus diamond nanowires. J. Chem. Phys. 120, 3817–3821 (2004)CrossRefGoogle Scholar
  107. 107.
    A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modeling of diamond nanowire structures. Nano Lett. 3, 1323–1328 (2003)CrossRefGoogle Scholar
  108. 108.
    A.R. Sobia, S. Adnan, A. Mukhtiar, A.A. Khurram, A.A. Turab, A. Awais, A. Naveed, Q.J. Faisal, H. Javaid, G.J. Yu, Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films. Curr. Appl. Phys. 12, 712–717 (2012)CrossRefGoogle Scholar
  109. 109.
    J. Shalini, Y.C. Lin, T.H. Chang, K.J. Sankaran, H.C. Chen, C.Y. Lee, N.H. Tai, Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties. Electrochim. Acta 92, 9–19 (2013)CrossRefGoogle Scholar
  110. 110.
    P. Feng, X.P. Wang, A. Aldalbahi, A.F. Zhou, Methane induced electrical property change of nitrogen doped ultrananocrystalline diamond nanowires. Appl. Phys. Lett. 107, 233103 (2015)CrossRefGoogle Scholar
  111. 111.
    L.Y. Zeng, H.Y. Peng, W.B. Wang, Y.Q. Chen, D. Lei, W. Qi, J.Q. Liang, J.L. Zhao, X.G. Kong, H. Zhang, Nanocrystalline diamond films deposited by the hot cathode direct current plasma chemical vapor deposition method with different compositions of CH4/Ar/H-2 gas mixture. J. Phys. Chem. C 112, 1401–1406 (2008)CrossRefGoogle Scholar
  112. 112.
    L.Y. Zeng, H.Y. Peng, W.B. Wang, Y.Q. Chen, D. Lei, W. Qi, J.Q. Liang, J.L. Zhao, X.G. Kong, H. Zhang, Synthesis and characterization of diamond microcrystals and nanorods deposited by hot cathode direct current plasma chemical vapor deposition method. J. Phys. Chem. C 112, 6160–6164 (2008)CrossRefGoogle Scholar
  113. 113.
    H. Motahari, R. Malekfar, Bottom-up diamond nanorod growth in HFCVD from nanocrystalline diamond film as a template-free method. Mater. Res. Express 4 (2017)Google Scholar
  114. 114.
    F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Man-made diamonds. Nature 176, 51–55 (1955)CrossRefGoogle Scholar
  115. 115.
    B.V. Derjaguin, D.V. Fedoseev, V.M. Lukyanovich, B.V. Spitzin, V.A. Ryabov, A.V. Lavrentyev, Filamentary diamond crystals. J. Cryst. Growth 2, 380–384 (1968)CrossRefGoogle Scholar
  116. 116.
    W.R.L. Lambrecht, C.H. Lee, B. Segall, J.C. Angus, Z.D. Li, M. Sunkara, Diamond nucleation by hydrogenation of the edges of graphitic precursors. Nature 364, 607–610 (1993)CrossRefGoogle Scholar
  117. 117.
    A. Gross, Hydrogen dissociation on metal surfaces - a model system for reactions on surfaces. Appl. Phys. A Mater. Sci. Process. 67, 627–635 (1998)CrossRefGoogle Scholar
  118. 118.
    H.F. Berger, E. Grosslinger, K.D. Rendulic, Coupling of vibrational and translational energy in the adsorption of H2 on FE(100)—state-resolved sticking coefficients. Surface Sci. 261, 313–320 (1992)CrossRefGoogle Scholar
  119. 119.
    J.H. Zhang, B.Q. Wei, J. Liang, Z.D. Gao, D.H. Wu, Synthesis of diamond from buckytubes by laser and quenching treatment. Mater. Lett. 31, 79–82 (1997)CrossRefGoogle Scholar
  120. 120.
    Y.Q. Hou, D.M. Zhuang, G. Zhang, M.S. Wu, J.J. Liu, Preparation of diamond films by hot filament chemical vapor deposition and nucleation by carbon nanotubes. Appl. Surf. Sci. 185, 303–308 (2002)CrossRefGoogle Scholar
  121. 121.
    Y.Q. Zhu, T. Sekine, T. Kobayashi, T. Takazawa, M. Terrones, H. Terrones, Collapsing carbon nanotubes and diamond formation under shock waves. Chem. Phys. Lett. 287, 689–693 (1998)CrossRefGoogle Scholar
  122. 122.
    B.Q. Wei, J. Liang, Z.D. Gao, J.H. Zhang, Y.Q. Zhu, Y.B. Li, D.H. Wu, The transformation of fullerenes into diamond under different processing conditions. J. Mater. Process. Technol. 63, 573–578 (1997)CrossRefGoogle Scholar
  123. 123.
    L.M. Cao, C.X. Gao, H.P. Sun, G.T. Zou, Z. Zhang, X.Y. Zhang, M. He, M. Zhang, Y.C. Li, J. Zhang, D.Y. Dai, L.L. Sun, W.K. Wang, Synthesis of diamond from carbon nanotubes under high pressure and high temperature. Carbon 39, 311–314 (2001)CrossRefGoogle Scholar
  124. 124.
    H. Yusa, Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. Diamond Relat. Mater. 11, 87–91 (2002)CrossRefGoogle Scholar
  125. 125.
    B. Wei, J. Zhang, J. Liang, D. Wu, The mechanism of phase transformation from carbon nanotube to diamond. Carbon 36, 997–1001 (1998)CrossRefGoogle Scholar
  126. 126.
    L.T. Sun, J.L. Gong, Z.Y. Zhu, D.Z. Zhu, S.X. He, Nanocrystalline diamond from carbon nanotubes. Appl. Phys. Lett. 84, 2901–2903 (2004)CrossRefGoogle Scholar
  127. 127.
    J. Singh, Nucleation and Growth-Mechanism of Diamond During Hot-Filament Chemical-Vapor-Deposition. J. Mater. Sci. 29, 2761–2766 (1994)CrossRefGoogle Scholar
  128. 128.
    N. Dubrovinskaia, L. Dubrovinsky, F. Langenhorst, S. Jacobsen, C. Liebske, Nanocrystalline diamond synthesized from C60. Diamond Relat. Mater. 14, 16–22 (2005)CrossRefGoogle Scholar
  129. 129.
    J. Voskuhl, M. Waller, S. Bandaru, B.A. Tkachenko, C. Fregonese, B. Wibbeling, P.R. Schreiner, B.J. Ravoo, Nanodiamonds in sugar rings: an experimental and theoretical investigation of cyclodextrin-nanodiamond inclusion complexes. Org. Biomol. Chem. 10, 4524–4530 (2012)CrossRefGoogle Scholar
  130. 130.
    J. Zhang, Y. Feng, H. Ishiwata, Y. Miyata, R. Kitaura, J.E.P. Dahl, R.M.K. Carlson, H. Shinohara, D. Tomanek, Synthesis and Transformation of Linear Adamantane Assemblies inside Carbon Nanotubes. ACS Nano 6, 8674–8683 (2012)CrossRefGoogle Scholar
  131. 131.
    D.A. Britz, A.N. Khlobystov, K. Porfyrakis, A. Ardavan, G.A.D. Briggs, Chemical reactions inside single-walled carbon nano test-tubes. Chem. Commun. 1, 37–39 (2005)CrossRefGoogle Scholar
  132. 132.
    J. Zhang, Y. Miyata, R. Kitaura, H. Shinohara, Preferential synthesis and isolation of (6, 5) single-wall nanotubes from one-dimensional C-60 coalescence. Nanoscale 3, 4190–4194 (2011)CrossRefGoogle Scholar
  133. 133.
    J. Zhang, Z. Zhu, Y.Q. Feng, H. Ishiwata, Y. Miyata, R. Kitaura, J.E.P. Dahl, R.M.K. Carlson, N.A. Fokina, P.R. Schreiner, Evidence of diamond nanowires formed inside carbon nanotubes from diamantine dicarboxylic acid. Angew. Chem. Int. Ed. 52, 3717–3721 (2013)CrossRefGoogle Scholar
  134. 134.
    G.C. McIntosh, M. Yoon, S. Berber, D. Tomanek, Diamond fragments as building blocks of functional nanostructures. Phys. Rev. B 70, 045401 (2004)CrossRefGoogle Scholar
  135. 135.
    W. Piekarczyk, How and why CVD diamond is formed: A solution of the thermodynamic paradox. J. Mater. Sci. 33, 3443–3453 (1998)CrossRefGoogle Scholar
  136. 136.
    O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27, 227–356 (2002)CrossRefGoogle Scholar
  137. 137.
    J.T. Tanskanen, M. Linnolahti, A.J. Karttunen, T.A. Pakkanen, From fulleranes and icosahedral diamondoids to polyicosahedral nanowires: structural, electronic, and mechanical characteristics. J. Phys. Chem. C 112, 11122–11129 (2008)CrossRefGoogle Scholar
  138. 138.
    F.L. Liu, Theoretical study on the coplanar double-cage dodecahedrane C35H30. Phys. Chem. Chem. Phys. 6, 906–909 (2004)CrossRefGoogle Scholar
  139. 139.
    F.L. Liu, L. Peng, J.X. Zhao, S.Q. Wang, Theoretical study of two C50H40 isomers with three dodecahedrane cages sharing two pentagons. Int. J. Quantum Chem. 103, 167–175 (2005)CrossRefGoogle Scholar
  140. 140.
    A.S. Barnard, S.P. Russo, I.K. Snook, From nanodiamond to diamond nanowires: structural properties affected by dimension. Philos. Mag. 84, 899–907 (2004)CrossRefGoogle Scholar
  141. 141.
    J. Guo, B. Wen, R. Melnik, S. Yao, T. Li, Geometry and temperature dependent thermal conductivity of diamond nanowires: Anon-equilibrium molecular dynamics study. Phys. E 43, 155–160 (2010)CrossRefGoogle Scholar
  142. 142.
    J. Guo, B. Wen, R. Melnik, S. Yao, T. Li, Molecular dynamics study on diamond nanowires mechanical properties: strain rate, temperature and size dependent effects. Diam. Relat. Mater. 20, 551–555 (2011)CrossRefGoogle Scholar
  143. 143.
    O.A. Shenderova, D.W. Brenner, R.S. Ruoff, Would diamond nanorods be stronger than fullerene nanotubes? Nano Lett. 3, 805–809 (2003)CrossRefGoogle Scholar
  144. 144.
    J.N. Coleman, U. Khan, W.J. Blau, Gun’ko YK: small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006)CrossRefGoogle Scholar
  145. 145.
    B.Z. Kupfer, R.K. Ahmad, A. Zainal, R.B. Jackman, Diam. Relat. Mater. 19, 742 (2010)CrossRefGoogle Scholar
  146. 146.
    F. Occelli, P. Loubeyre, R. Letoullec, Properties of diamond under hydrostatic pressures up to 140 GPa. Nat. Mater. 2, 151–154 (2003)CrossRefGoogle Scholar
  147. 147.
    T. Yamanaka, S. Morimoto, H. Kanda, Influence of the isotope ratio on the lattice-constant of diamond. Phys. Rev. B 49, 9341–9343 (1994)CrossRefGoogle Scholar
  148. 148.
    H. Cynn, J.E. Klepeis, C.S. Yoo, D.A. Young, Osmium has the lowest experimentally determined compressibility. Phys. Rev. Lett. 88, 135701 (2002)CrossRefGoogle Scholar
  149. 149.
    H. Peelaers, B. Partoens, F.M. Peeters, Phonon band structure of Si nanowires: a stability analysis. Nano Lett. 9, 107–111 (2009)CrossRefGoogle Scholar
  150. 150.
    H. Peelaers, B. Partoens, F.M. Peeters, Phonons in Ge nanowires. Appl. Phys. Lett. 95, 122110 (2009)CrossRefGoogle Scholar
  151. 151.
    A. Trejo, A. Miranda, L. Rivera, A. Diaz-mendez, M. Cruz-Irisson, Phonon optical modes and electronic properties in diamond nanowires. Micoelectron. Eng. 90, 92–95 (2012)CrossRefGoogle Scholar
  152. 152.
    K.W. Sun, J.Y. Wang, T.Y. Ko, Raman spectroscopy of single nanodiamond: Phonon-confinement effects. Appl. Phys. Lett. 92, 153115 (2008)CrossRefGoogle Scholar
  153. 153.
    Y. Yonezu, K. Wakui, K. Furusawa, M. Takeoka, K. Semba, T. Aoki, Efficient Single-Photon Coupling from a Nitrogen-Vacancy Center Embedded in a Diamond Nanowire Utilizing an Optical Nanofiber. Sci. Rep. 7, 12985 (2017)CrossRefGoogle Scholar
  154. 154.
    S. Li, C.H. Li, B.W. Zhao, Y. Dong, C.C. Li, X.D. Chen, Y.S. Ge, F.W. Sun, A bright single-photon source from nitrogen-vacancy centers in diamond nanowires. Chin. Phys. Lett. 34, 096101 (2017)CrossRefGoogle Scholar
  155. 155.
    J.R. Solano, A.T. Banos, A.M. Duran, E.C. Quiroz, M.C. Irisson, DFT study of anisotropy effects on the electronic properties of diamond nanowires with nitrogen-vacancy center. J. Mol. Model. 23, 292 (2017)CrossRefGoogle Scholar
  156. 156.
    J.H. Zhang, J.X. Cao, X.Y. Chen, J.W. Ding, P.H. Zhang, W. Ren, Diamond nanowires with nitrogen vacancy under a transverse electric field. Phys. Rev. B 91, 045417 (2015)CrossRefGoogle Scholar
  157. 157.
    C.W. Padgett, D.W. Brenner, Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes. Nano Lett. 4, 1051–1053 (2004)CrossRefGoogle Scholar
  158. 158.
    N.V. Novikov, A.P. Podoba, S.V. Shmegera, A. Witek, A.M. Zaitsev, A.B. Denisenko, W.R. Fahmer, M. Werner, Influence of isotopic content on diamond thermal conductivity. Diamond Relat. Mater. 8, 1602–1606 (1999)CrossRefGoogle Scholar
  159. 159.
    J.F. Moreland, J.B. Freund, G. Chen, The disparate thermal conductivity of carbon nanotubes and diamond nanowires studied by atomistic simulation. Microscale Thermophys. Eng. 8, 61–69 (2004)CrossRefGoogle Scholar
  160. 160.
    C.W. Padgett, O. Shenderova, D.W. Brenner, Thermal conductivity of diamond nanorods: Molecular simulation and scaling relations. Nano Lett. 6, 1827–1831 (2006)CrossRefGoogle Scholar
  161. 161.
    F.J. Himpsel, J.A. Knapp, J.A. Vanvechten, D.E. Eastman, Quantum photoyield of diamond(111)—stable negative-affinity emitter. Phys. Rev. B 20, 624–627 (1979)CrossRefGoogle Scholar
  162. 162.
    B.J. Cui, J. Ristein, L. Ley, Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys. Rev. Lett. 81, 429–432 (1998)CrossRefGoogle Scholar
  163. 163.
    T. Ito, M. Nishimura, M. Yokoyama, M. Irie, C.L. Wang, Highly efficient electron emitting diode fabricated with single-crystalline diamond. Diamond relat. Mater. 9, 1561–1568 (2000)CrossRefGoogle Scholar
  164. 164.
    I.L. Krainsky, V.M. Asnin, G.T. Mearini, J.A. Dayton, Negative-electron-affinity effect on the surface of chemical-vapor-deposited diamond polycrystalline films. Phys. Rev. B 53, R7650–R7653 (1996)CrossRefGoogle Scholar
  165. 165.
    Y.K. Chang, H.H. Hsieh, W.F. Pong, M.H. Tsai, F.Z. Chien, P.K. Tseng, L.C. Chen, T.Y. Wang, K.H. Chen, D.M. Bhusari, J.R. Yang, S.T. Lin, Quantum confinement effect in diamond nanocrystals studied by X-ray-absorption spectroscopy. Phys. Rev. Lett. 82, 5377–5380 (1999)CrossRefGoogle Scholar
  166. 166.
    N. Jiang, K. Eguchi, S. Noguchi, T. Inaoka, Y. Shintani, Structural characteristics and field electron emission properties of nano-diamond/carbon films. J. Cryst. Growth 236, 577–582 (2002)CrossRefGoogle Scholar
  167. 167.
    S. Gupta, B.L. Weiss, B.R. Weiner, G. Morell, Electron field emission from sulfur-incorporated nanocrystalline carbon thin films. Appl. Phys. Lett. 79, 3446–3448 (2001)CrossRefGoogle Scholar
  168. 168.
    L. Gan, E. Baskin, C. Saguy, R. Kalish, Quantization of 2D hole gas in conductive hydrogenated diamond surfaces observed by electron field emission. Phys. Rev. Lett. 96, 196808 (2006)CrossRefGoogle Scholar
  169. 169.
    W. Zhu, G.P. Kochanski, S. Jin, Low-field electron emission from undoped nanostructured diamond. Science 282, 1471–1473 (1998)CrossRefGoogle Scholar
  170. 170.
    D. Pradhan, I.N. Lin, Grain-Size-Dependent Diamond-Nondiamond Composite Films: Characterization and Field-Emission Properties. ACS Appl. Mater. Interfaces 1, 1444–1450 (2009)CrossRefGoogle Scholar
  171. 171.
    J.P. Thomas, H.C. Chen, N.H. Tai, I.N. Lin, Freestanding Ultrananocrystalline Diamond Films with Homojunction Insulating Layer on Conducting Layer and Their High Electron Field Emission Properties. ACS Appl. Mater. Interfaces 3, 4007–4013 (2011)CrossRefGoogle Scholar
  172. 172.
    M. Shiraishi, M. Ata, Work function of carbon nanotubes. Carbon 39, 1913–1917 (2001)CrossRefGoogle Scholar
  173. 173.
    Z. Xu, X.D. Bai, E.G. Wang, Wang Zl: Field emission of individual carbon nanotube with in situ tip image and real work function. Appl. Phys. Lett. 87, 163106 (2005)CrossRefGoogle Scholar
  174. 174.
    R.C. Smith, S.R.P. Silva, Interpretation of the field enhancement factor for electron emission from carbon nanotubes. J. Appl. Phys. 106, 014314 (2009)CrossRefGoogle Scholar
  175. 175.
    A. Mayer, N.M. Miskovsky, P.H. Cutler, Photon-stimulated field emission from semiconducting (10,0) and metallic (5,5) carbon nanotubes. Phys. Rev. B 65, 195416 (2002)CrossRefGoogle Scholar
  176. 176.
    Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seeling, R.P.H. Chang, A nanotube-based field-emission flat panel display. Appl. Phys. Lett. 72, 2912–2913 (1998)CrossRefGoogle Scholar
  177. 177.
    I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photonics 10, 631–641 (2016)CrossRefGoogle Scholar
  178. 178.
    P.C. Maurer et al., Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012)CrossRefGoogle Scholar
  179. 179.
    C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Stable solid-state source of single photons. Phys. Rev. Lett. 85 290 (2000)Google Scholar
  180. 180.
    T. Gaebel et al., Room-temperature coherent coupling of single spins in diamond. Nat. Phys. 2, 408–413 (2006)CrossRefGoogle Scholar
  181. 181.
    J. Maze et al., Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008)CrossRefGoogle Scholar
  182. 182.
    M. Almokhtar, M. Fujiwara, H. Takashima, Takeuchi S: Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices. Opt. Express 22, 20045–20059 (2014)CrossRefGoogle Scholar
  183. 183.
    A. Sipahigil et al., An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016)CrossRefGoogle Scholar
  184. 184.
    M. Najam-ul-Haq, M. Rainer, C.W. Huck, P. Hausberger, H. Kraushaar, G.K. Bonn, Nanostructured diamond-like carbon on digital versatile disc as a matrix-free target for laser desorption/ionization mass spectrometry. Anal. Chem. 80, 7467–7472 (2008)CrossRefGoogle Scholar
  185. 185.
    S. Szunerits, Y. Coffinier, R. Boukherroub, Diamond nanowires: a novel platform for electrochemistry and matrix-free mass spectrometry. Sensors 15, 12573–12593 (2015)CrossRefGoogle Scholar
  186. 186.
    A. Socoliuc, Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207–210 (2006)CrossRefGoogle Scholar
  187. 187.
    J.M. Kim, J.H. Park, C.W. Baek, Y.K. Kim, The SiOG-based single-crystalline silicon (SCS) RF MEMS switch with uniform characteristics. J. Microelectromech. Syst. 13, 1036–1042 (2004)CrossRefGoogle Scholar
  188. 188.
    M. Adamschik, J. Kuserer, P. Schmid, K.B. Schad, D. Grobe, E. Kohn, Diamond microwave micro relay. Diam. Relat. Mater. 11, 672–676 (2002)CrossRefGoogle Scholar
  189. 189.
    V.P. Adiga, A.V. Sumant, S. Suresh, C. Gudeman, O. Auiello, J.A. Carlisle, R.W. Carpick, Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators. Phys. Rev. B 79, 245403 (2009)CrossRefGoogle Scholar
  190. 190.
    G. Carpini, F. Lucarelli, G. Marrazza, M. Mascini, Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosens. Bioelectron. 20, 167–175 (2004)CrossRefGoogle Scholar
  191. 191.
    O. Paenke, A. Kirbs, F. Lisdat, Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using. Biosens. Bioelectron. 22, 2656–2662 (2007)CrossRefGoogle Scholar
  192. 192.
    H. Aoki, H. Tao, Gene sensors based on peptide nucleic acid (PNA) probes: Relationship between sensor sensitivity and probe/target duplex stability. Analyst 130, 1478–1482 (2005)CrossRefGoogle Scholar
  193. 193.
    G. Zhao, Y. Qi, Y. Tian, Simultaneous and direct determination of tryptophan and tyrosine at boron-doped diamond electrode. Electroanalysis 18, 830–834 (2006)CrossRefGoogle Scholar
  194. 194.
    W. Huang, G. Mai, Y. Liu, C. Yang, W. Qua, Voltammetric Determination of Tryptophan at a Single-Wall Carbon Nanotubes Modified Electrode. J. Nanosci. Nanotechnol. 4, 423–427 (2004)CrossRefGoogle Scholar
  195. 195.
    J. Shalini, K.J. Sankaran, C.Y. Lee, N.H. Tai, I.N. Lin, An amperometric urea bisosensor based on covalent immobilization of urease on N-2 incorporated diamond nanowire electrode. Biosens. Bioelectron. 56, 64–70 (2014)CrossRefGoogle Scholar
  196. 196.
    P. Feng, X. Wang, A. Aldalbahi, A.F. Zhou, Methane induced electrical property change of nitrogen doped ultrananocrystalline diamond nanowires. Appl. Phys. Lett. 107, 233103 (2015)CrossRefGoogle Scholar
  197. 197.
    X.Y. Peng, J. Chu, L.D. Wang, S.K. Duan, P. Feng, Boron-doped diamond nanowires for CO gas sensing application. Sens. Actuators B Chem. 241, 383–389 (2017)CrossRefGoogle Scholar
  198. 198.
    F. Gao, R. Thomann, C.E. Nebel, Aligned Pt-diamond core-shell nanowires for electrochemical catalysis. Electrochem. Commun. 50, 32–35 (2015)CrossRefGoogle Scholar
  199. 199.
    N.J. Yang, J.S. Foord, X. Jiang, Diamond electrochemistry at the nanoscale: a Rev. Carbon 99, 90–110 (2016)CrossRefGoogle Scholar
  200. 200.
    D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Muller-Sebert, P. Gentile, S. Pouget, C.E. Nebel, G. Bidan, Powering electrodes for high performance aqueous micro-supercapacitors: diamond-coated silicon nanowires operating at a wide cell voltage of 3 V. Electrochim. Acta 242, 173–179 (2017)CrossRefGoogle Scholar
  201. 201.
    X.F. Chen, W.J. Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev. 46, 734–760 (2017)CrossRefGoogle Scholar
  202. 202.
    X.Y. Zhu, S.Y. Kwok, M.F. Yuen, L. Yan, W. Chen, Y. Yang, Z.G. Wang, K.N. Yu, G.Y. Zhu, W.J. Zhang, Dense diamond nanoneedle arrays for enhanced intracellular delivery of drug molecules to cell lines. J. Mater. Sci. 50, 7800–7807 (2015)CrossRefGoogle Scholar
  203. 203.
    K.J. Sankaran, C.J. Yeh, S. Drijkoningen, P. Pobedinskas, M.K. Van Bael, K.C. Leou, I.N. Lin, K. Haenen, Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid. Nanotechnology 28, 065701 (2017)CrossRefGoogle Scholar
  204. 204.
    C.H. Lee, E.S. Lee, Y.K. Lim, K.H. Park, H.D. Park, D.S. Lim, Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode. RSC Adv. 7, 6229–6235 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular ScienceShaanxi University of Science & TechnologyXi AnChina
  2. 2.Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations