Stability of Nanoparticle Dispersions and Particle Agglomeration

  • Kateryna LozaEmail author
  • Matthias Epple
  • Michael Maskos
Part of the NanoScience and Technology book series (NANO)


The stability of colloids is an important issue of colloid-based processes and formulations. Due to the large specific surface area, particles have a low thermodynamic stability and tend to agglomerate over time. Furthermore, the physicochemical properties of nanomaterials depend on the size, morphology, and surface state of the system, therefore in-depth characterization techniques are essential to predict the degree of variation in properties. In this chapter, the colloidal stability of nanoparticle dispersions as well as the basic stabilization mechanisms will be discussed both at the theoretical and at the experimental level. Relevant characterization methods will be presented and illustrated with suitable examples, including their limitations.


  1. 1.
    Graham, T.: Liquid diffusion applied to analysis. Phil. Trans. R. Soc. 151, 183, 184, 206, 207, 220, 221 (1861)Google Scholar
  2. 2.
    Dörfler, H.D.: Grenzflächen und kolloid-disperse Systeme. Springer, Berlin (2002)CrossRefGoogle Scholar
  3. 3.
    Selmi, F.: Azione del latte sulle materie metalliche e reazioni di queste su quello: discorso letto da Francesco Selmi nell’adunanza. Soc. Agr. Reg. (1847)Google Scholar
  4. 4.
    Faraday, M.X.: The Bakerian lecture—experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. 147, 145–181 (1857)Google Scholar
  5. 5.
    Hofmann, T.: Kolloide: Die Welt der vernachlässigten Dimensionen. Chem. unserer Zeit 38, 24–35 (2004)CrossRefGoogle Scholar
  6. 6.
    Duffus, J.H., Nordberg, M., Templeton, D.M.: Glossary of Terms Used in Toxicology, 2nd edn. (IUPAC Recommendations 2007). Pure and Applied Chemistry, p. 1153 (2007)Google Scholar
  7. 7.
    Sarquis, J.: Colloidal systems. J. Chem. Educ. 57, 602–605 (1980)CrossRefGoogle Scholar
  8. 8.
    Markus, A.A., Parsons, J.R., Roex, E.W.M., de Voogt, P., Laane, R.W.P.M.: Modeling aggregation and sedimentation of nanoparticles in the aquatic environment. Sci. Total Environ. 506–507, 323–329 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Teeguarden, J.G., Hinderliter, P.M., Orr, G., Thrall, B.D., Pounds, J.G.: Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 95, 300–312 (2007)CrossRefGoogle Scholar
  10. 10.
    Loza, K., Föhring, I., Bünger, J., Westphal, G.A., Köller, M., Epple, M., et al.: Barium sulfate micro- and nanoparticles as bioinert reference material in particle toxicology. Nanotoxicology 10, 1492–1502 (2016)CrossRefGoogle Scholar
  11. 11.
    Cosgrove, T.: Colloid Science: Principles, Methods and Applications. Willey (2010)Google Scholar
  12. 12.
    Hinderliter, P.M., Minard, K.R., Orr, G., Chrisler, W.B., Thrall, B.D., Pounds, J.G., et al.: ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol. 7, 36 (2010)CrossRefGoogle Scholar
  13. 13.
    Mason, M., Weaver, W.: The settling of small particles in a fluid. Phys. Rev. 23, 412–426 (1924)ADSCrossRefGoogle Scholar
  14. 14.
    Kang, T., Park, C., Choi, J.-S., Cui, J.-H., Lee, B.-J.: Effects of shear stress on the cellular distribution of polystyrene nanoparticles in a biomimetic microfluidic system. J. Drug Deliv. Sci. Tech. 31, 130–136 (2016)CrossRefGoogle Scholar
  15. 15.
    Harris, S.S., Giorgio, T.D.: Convective flow increases lipoplex delivery rate to in vitro cellular monolayers. Gene Ther. 12, 512 (2005)CrossRefGoogle Scholar
  16. 16.
    Deryaguin, B., Landau, L.D.: Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim. USSR 14 (1941)Google Scholar
  17. 17.
    Verwey, E.W., Overbeek, J.T.G.: Theory of Stability of Lyophobic Colloids. Elsevier, Amsterdam (1948)Google Scholar
  18. 18.
    Helmholtz, H.: Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Phys. 165, 211–233 (1853)CrossRefGoogle Scholar
  19. 19.
    Stern, O.: The theory of the electrolytic double-layer. Zeit Elektrochem 30, 508–516 (1924)Google Scholar
  20. 20.
    Gouy, L.G.: Sur la constitution de la charge électrique à la surface d’un electrolyte. J. Phys. 9, 457–468 (1910)zbMATHGoogle Scholar
  21. 21.
    Tadros, T.F.: Colloid Stability: The Role of Surface Forces. WILEY-VCH Verlag GmbH, Weinheim (2007)Google Scholar
  22. 22.
    Kaldasch, J., Laven, J., Stein, H.N.: Equilibrium phase diagram of suspensions of electrically stabilized colloidal particles. Langmuir 12, 6197–6201 (1996)CrossRefGoogle Scholar
  23. 23.
    Ostwald, W.: Lehrbuch der Allgemeinen Chemie. 1st edn. Leipzig (1896)Google Scholar
  24. 24.
    Singh, Y., Meher, J.G., Raval, K., Khan, F.A., Chaurasia, M., Jain, N.K., et al.: Nanoemulsion: concepts, development and applications in drug delivery. J. Control Release 252, 28–49 (2017)CrossRefGoogle Scholar
  25. 25.
    Zhang, Z., Wang, Z., He, S., Wang, C., Jin, M., Yin, Y.: Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem. Sci. 6, 5197–5203 (2015)CrossRefGoogle Scholar
  26. 26.
    Mahl, D., Diendorf, J., Ristig, S., Greulich, C., Li, Z.-A., Farle, M., et al.: Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action. J. Nanopart. Res. 14, 1153 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Fatehah, M.O., Aziz, H.A., Stoll, S.: Stability of ZnO nanoparticles in solution. Influence of pH, dissolution, aggregation and disaggregation effects. J. Colloid Sci. Biotechnol. 3, 75–84 (2014)Google Scholar
  28. 28.
    Segets, D., Marczak, R., Schäfer, S., Paula, C., Gnichwitz, J.-F., Hirsch, A., et al.: Experimental and theoretical studies of the colloidal stability of nanoparticles—a general interpretation based on stability maps. ACS Nano 5, 4658–4669 (2011)CrossRefGoogle Scholar
  29. 29.
    Fajans, K., Hassel, O.: Eine neue Methode zur Titration von Silber- und Halogenionen mit organischen Farbstoffindikatoren. Z. Anorg. Allg. Chem. 137, 221–245 (1923)Google Scholar
  30. 30.
    Schofield, R.K.: Effect of pH on electric charges carried by clay particles. J. Soil Sci. 1, 1–8 (1950)CrossRefGoogle Scholar
  31. 31.
    Feigin, R.I., Napper, D.H.: Depletion stabilization and depletion flocculation. J. Colloid Interface Sci. 75, 525–541 (1980)ADSCrossRefGoogle Scholar
  32. 32.
    Ji, S., Walz, J.Y.: Depletion forces and flocculation with surfactants, polymers and particles—synergistic effects. Curr. Opin. Colloid In. 20, 39–45 (2015)CrossRefGoogle Scholar
  33. 33.
    Xu, W., Nikolov, A.D., Wasan, D.T.: Role of depletion and surface-induced structural forces in bidisperse suspensions. AIChE J. 43, 3215–3222 (2004)CrossRefGoogle Scholar
  34. 34.
    Ruesing, J., Rotan, O., Gross-Heitfeld, C., Mayer, C., Epple, M.: Nanocapsules of a cationic polyelectrolyte and nucleic acid for efficient cellular uptake and gene transfer. J. Mater. Chem. B 2, 4625–4630 (2014)CrossRefGoogle Scholar
  35. 35.
    Berne, B.J., Pecora, R:. Dynamic Light Scattering. Courier Dover Publications (2000)Google Scholar
  36. 36.
    Schaertl, W.: Light Scattering from Polymer Solutions and Nanoparticle Dispersions. 1st edn. ed: Springer Laboratory, Springer (2007)Google Scholar
  37. 37.
    Filipe, V., Hawe, A., Jiskoot, W.: Critical evaluation of nanoparticle tracking analysis (NTA) by Nanosight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27, 796–810 (2010)Google Scholar
  38. 38.
    Defante, A.P., Vreeland, W.N., Benkstein, K.D., Ripple, D.C.: Using image attributes to assure accurate particle size and count using nanoparticle tracking analysis. J. Pharm. Sci. 107, 1383–1391 (2018)CrossRefGoogle Scholar
  39. 39.
    Loza, K., Sengstock, C., Chernousova, S., Koller, M., Epple, M.: The predominant species of ionic silver in biological media is colloidally dispersed nanoparticulate silver chloride. RSC Adv. 4, 35290–35297 (2014)CrossRefGoogle Scholar
  40. 40.
    Fitzpatrick, S.T.: Particle size analysis by differential centrifugal sedimentation: advantages and limitations, recent progress, and future trends. Polym. News. 24, 42–50 (1999)Google Scholar
  41. 41.
    Johnston, B.D., Kreyling, W.G., Pfeiffer, C., Schäffler, M., Sarioglu, H., Ristig, S., et al.: Colloidal stability and surface chemistry are key factors for the composition of the protein corona of inorganic gold nanoparticles. Adv. Funct. Mater. 27 (2017)Google Scholar
  42. 42.
    Schuetze, B., Mayer, C., Loza, K., Gocyla, M., Heggen, M., Epple, M.: Conjugation of thiol-terminated molecules to ultrasmall 2 nm-gold nanoparticles leads to remarkably complex 1H-NMR spectra. J. Mater. Chem. B 4, 2179–2189 (2016)CrossRefGoogle Scholar
  43. 43.
    Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C). FEI Titan G3 50-300 PICO. J. Large-scale. Res. Facil. 1, A34 (2015)Google Scholar
  44. 44.
    Reimer, L.: Scanning electron microscopy. In: Physics of Image Formation and Microanalysis. Springer, Berlin, Heidelberg (1998)Google Scholar
  45. 45.
    Hawkes, P.: The Beginnings of Electron Microscopy. Academic Press (1985)Google Scholar
  46. 46.
    Ristig, S.: Bimetallische Silber-Gold-Nanopartikel: Synthese, Charakterisierung und zellbiologische Untersuchungen. Thesis, University of Duisburg-Essen, Essen (2014)Google Scholar
  47. 47.
    Dieckmann, Y., Cölfen, H., Hofmann, H., Petri-Fink, A.: Particle size distribution measurements of manganese-doped ZnS nanoparticles. Anal. Chem. 81, 3889–3895 (2009)CrossRefGoogle Scholar
  48. 48.
    Bootz, A., Vogel, V., Schubert, D., Kreuter, J.: Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 57, 369–375 (2004)CrossRefGoogle Scholar
  49. 49.
    Mahl, D., Diendorf, J., Meyer-Zaika, W., Epple, M.: Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles. Coll. Surf. A Physicochem. Eng. Asp 377, 386–392 (2011)CrossRefGoogle Scholar
  50. 50.
    Fissan, H., Ristig, S., Kaminski, H., Asbach, C., Epple, M.: Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal. Methods 6, 7324–7334 (2014)CrossRefGoogle Scholar
  51. 51.
    Weitz, D.A., Huang, J.S., Lin, M.Y., Sung, J.: Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids. Phys. Rev. Lett. 54, 1416–1419 (1985)ADSCrossRefGoogle Scholar
  52. 52.
    Liu, J., Shih, W.Y., Sarikaya, M., Aksay, I.A.: Fractal colloidal aggregates with finite interparticle interactions: energy dependence of the fractal dimension. Phys. Rev. A 41, 3206–3213 (1990)ADSCrossRefGoogle Scholar
  53. 53.
    Lang, T., Eslahian, K.A., Maskos, M.: Ion effects in field-flow fractionation of aqueous colloidal polystyrene. Macromol. Chem. Phys. 213, 2353–2361 (2012)CrossRefGoogle Scholar
  54. 54.
    Schimpf, M.E., Caldwell, K., Giddings, J.C.: Field-flow fractionation handbook. NY Wiley—Interscience, New York (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Inorganic ChemistryUniversity of Duisburg-EssenEssenGermany
  2. 2.Fraunhofer-Institute for Microengineering and Microsystems (IMM)MainzGermany

Personalised recommendations