Advertisement

Synthesis of Metallic and Metal Oxide Particles

  • Kateryna LozaEmail author
  • Matthias Epple
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The diversity of applications in catalysis, energy storage and medical diagnostics utilizes unique and fascinating properties of metal and metal oxide nanostructures. Confined to the nanometer scale, materials may display properties that are different from the equivalent bulk compounds. To meet the requirements for various applications, numerous production techniques were developed to control particle size, morphology, aggregation state, crystal structure, surface charge and composition. This chapter presents an overview of the preparation of metallic and metal oxide nanoparticles by bottom-up and top-down approaches. We describe basic synthetic routes for prominent cases of metals (gold, silver, platinum and copper) and metal oxides (zinc oxide, titania, and silica).

References

  1. 1.
    Elghanian, R., et al.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329), 1078 (1997)CrossRefGoogle Scholar
  2. 2.
    Haes, A.J., Van Duyne, R.P.: A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124(35), 10596–10604 (2002)CrossRefGoogle Scholar
  3. 3.
    Sokolov, K., et al.: Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63(9), 1999–2004 (2003)Google Scholar
  4. 4.
    El-Sayed, I.H., Huang, X., El-Sayed, M.A.: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5(5), 829–834 (2005)CrossRefADSGoogle Scholar
  5. 5.
    Alivisatos, P.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47 (2003)CrossRefGoogle Scholar
  6. 6.
    Li, Y.Y., et al.: Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor. Acta Biomater. 47, 124–134 (2017)CrossRefGoogle Scholar
  7. 7.
    Liu, J.N., Bu, W.B., Shi, J.L.: Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev. 117(9), 6160–6224 (2017)CrossRefGoogle Scholar
  8. 8.
    Liu, G.L., et al.: Fluorescence enhancement of terminal amine assembled on gold nanoclusters and its application to ratiometric lysine detection. Langmuir 33(51), 14643–14648 (2017)CrossRefGoogle Scholar
  9. 9.
    Ricciardi, L., et al.: Plasmon-mediated cancer phototherapy: the combined effect of thermal and photodynamic processes. Nanoscale 9(48), 19279–19289 (2017)CrossRefGoogle Scholar
  10. 10.
    Chen, Y.P., Xianyu, Y.L., Jiang, X.Y.: Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res. 50(2), 310–319 (2017)CrossRefGoogle Scholar
  11. 11.
    Xiang, Y., Lu, Y.: Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat. Chem. 3(9), 697–703 (2011)CrossRefGoogle Scholar
  12. 12.
    Hahn, M.A., et al.: Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal. Bioanal. Chem. 399(1), 3–27 (2011)CrossRefGoogle Scholar
  13. 13.
    Sailor, M.J., Park, J.H.: Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24(28), 3779–3802 (2012)CrossRefGoogle Scholar
  14. 14.
    Zhang, P.C., et al.: Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 6(7), 948–968 (2016)CrossRefGoogle Scholar
  15. 15.
    Yang, Q.H., Xu, Q., Jiang, H.L.: Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem. Soc. Rev. 46(15), 4774–4808 (2017)CrossRefGoogle Scholar
  16. 16.
    Jiang, K.Z., et al.: Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 3(2), 8 (2017)CrossRefGoogle Scholar
  17. 17.
    Eftekhari, A.: Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 42(16), 11053–11077 (2017)CrossRefGoogle Scholar
  18. 18.
    Xu, H., et al.: Facile synthesis of Pd-Ru-P ternary nanoparticle networks with enhanced electrocatalytic performance for methanol oxidation. Int. J. Hydrogen Energy 42(16), 11229–11238 (2017)CrossRefGoogle Scholar
  19. 19.
    El-Sayed, M.A.: Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34(4), 257–264 (2001)CrossRefGoogle Scholar
  20. 20.
    Shenhar, R., Rotello, V.M.: Nanoparticles: scaffolds and building blocks. Acc. Chem. Res. 36(7), 549–561 (2003)CrossRefGoogle Scholar
  21. 21.
    Eustis, S., el-Sayed, M.A.: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35(3), 209–217 (2006)Google Scholar
  22. 22.
    Toshima, N., Yonezawa, T.: Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem. 22(11), 1179–1201 (1998)CrossRefGoogle Scholar
  23. 23.
    Johnston, R.L.: Atomic and Molecular Clusters. Taylor & Francis (2002)Google Scholar
  24. 24.
    Sau, T.K., Rogach, A.L.: Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv. Mater. 22(16), 1781–1804 (2010)CrossRefGoogle Scholar
  25. 25.
    Sau, T.K., Murphy, C.J.: Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126(28), 8648–8649 (2004)CrossRefGoogle Scholar
  26. 26.
    Lee, H., et al.: Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J. Am. Chem. Soc. 130(16), 5406–5407 (2008)CrossRefGoogle Scholar
  27. 27.
    Zhang, J., et al.: Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon resonances. Adv. Funct. Mater. 17(16), 3295–3303 (2007)CrossRefGoogle Scholar
  28. 28.
    Yu, Y.-T., Xu, B.-Q.: Shape-controlled synthesis of Pt nanocrystals: an evolution of the tetrahedral shape. Appl. Organomet. Chem. 20(10), 638–647 (2006)CrossRefGoogle Scholar
  29. 29.
    Schuetze, B., et al.: Conjugation of thiol-terminated molecules to ultrasmall 2 nm-gold nanoparticles leads to remarkably complex 1H-NMR spectra. J. Mater. Chem. B 4(12), 2179–2189 (2016)CrossRefGoogle Scholar
  30. 30.
    Helmlinger, J., et al.: A rapid, high-yield and large-scale synthesis of uniform spherical silver nanoparticles by a microwave-assisted polyol process. RSC Adv. 5(112), 92144–92150 (2015)CrossRefGoogle Scholar
  31. 31.
    Sajanlal, P.R., Pradeep, T.: Electric-field-assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates. Adv. Mater. 20(5), 980–983 (2008)CrossRefGoogle Scholar
  32. 32.
    Wang, L., et al.: Synthesis of gold nano- and microplates in hexagonal liquid crystals. J. Phys. Chem. B 109(8), 3189–3194 (2005)CrossRefGoogle Scholar
  33. 33.
    Djalali, R., Chen, Y.F., Matsui, H.: Au nanowire fabrication from sequenced histidine-rich peptide. J. Am. Chem. Soc. 124(46), 13660–13661 (2002)CrossRefGoogle Scholar
  34. 34.
    Faraday, M.: X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)Google Scholar
  35. 35.
    Turkevich, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951)CrossRefGoogle Scholar
  36. 36.
    Frens, G.: Particle size and sol stability in metal colloids. Kolloid-Zeitschrift und Zeitschrift für Polymere 250(7), 736–741 (1972)CrossRefGoogle Scholar
  37. 37.
    Frens, G.: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. NPhS 241, 20 (1973)ADSGoogle Scholar
  38. 38.
    Huang, X., et al.: One-step, size-controlled synthesis of gold nanoparticles at room temperature using plant tannin. Green Chem. 12(3), 395–399 (2010)CrossRefGoogle Scholar
  39. 39.
    Mahl, D., et al.: Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action. J. Nanopart. Res. 14(10), 1153 (2012)CrossRefADSGoogle Scholar
  40. 40.
    Shang, L., et al.: One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 7(18), 2614–2620 (2011)CrossRefGoogle Scholar
  41. 41.
    Jana, N.R., Gearheart, L., Murphy, C.J.: Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17(22), 6782–6786 (2001)CrossRefGoogle Scholar
  42. 42.
    Perrault, S.D., Chan, W.C.W.: Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J. Am. Chem. Soc. 131(47), 17042–17043 (2009)CrossRefGoogle Scholar
  43. 43.
    Ristig, S., et al.: An easy synthesis of autofluorescent alloyed silver-gold nanoparticles. J. Mater. Chem. B 2(45), 7887–7895 (2014)CrossRefGoogle Scholar
  44. 44.
    Brust, M., et al.: Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 7, 801–802 (1994)Google Scholar
  45. 45.
    Allpress, J.G., Sanders, J.V.: The structure and orientation of crystals in deposits of metals on mica. Surf. Sci. 7(1), 1–25 (1967)CrossRefADSGoogle Scholar
  46. 46.
    Structural studies of trigonal lamellar particles of gold and silver. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 440(1910), 589–609 (1993)Google Scholar
  47. 47.
    Sun, Y., Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176 (2002)CrossRefADSGoogle Scholar
  48. 48.
    Rehbock, C., et al.: Size control of laser-fabricated surfactant-free gold nanoparticles with highly diluted electrolytes and their subsequent bioconjugation. PCCP 15(9), 3057–3067 (2013)CrossRefADSGoogle Scholar
  49. 49.
    Semaltianos, N.G.: Nanoparticles by laser ablation. Crit. Rev. Solid State Mater. Sci. 35(2), 105–124 (2010)CrossRefADSGoogle Scholar
  50. 50.
    Popovic, D.M., et al.: Continuous wave laser for tailoring the photoluminescence of silicon nanoparticles produced by laser ablation in liquid. J. Appl. Phys. 122(11), 113107 (2017)CrossRefADSGoogle Scholar
  51. 51.
    Tsuji, T., et al.: Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl. Surf. Sci. 202(1), 80–85 (2002)CrossRefADSGoogle Scholar
  52. 52.
    Walter, J.G., et al.: Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers. J. Nanobiotechnol. 8(1), 21 (2010)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Jin, R., et al.: Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116(18), 10346–10413 (2016)CrossRefGoogle Scholar
  54. 54.
    Schmid, G.: The relevance of shape and size of Au55 clusters. Chem. Soc. Rev. 37(9), 1909–1930 (2008)CrossRefADSGoogle Scholar
  55. 55.
    Hakkinen, H.: Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37(9), 1847–1859 (2008)CrossRefGoogle Scholar
  56. 56.
    Schmid, G., et al.: Au55[P(C6H5)3]12CI6—ein Goldcluster ungewöhnlicher Größe. Chem. Ber. 114(11), 3634–3642 (1981)CrossRefGoogle Scholar
  57. 57.
    Newton, M.G., et al.: Symmetrical and unsymmetrical bridging carbonyl groups in binuclear molybdenum carbonyl complexes of alkylaminobis(difluorophosphines); X-ray crystal structures of two of the complexes. J. Chem. Soc. Chem. Commun. (3), 201–203 (1982)Google Scholar
  58. 58.
    Tyo, E.C., Vajda, S.: Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577 (2015)CrossRefADSGoogle Scholar
  59. 59.
    Nonappa, et al., Template‐free supracolloidal self‐assembly of atomically precise gold nanoclusters: from 2D Colloidal crystals to spherical capsids. Angew. Chem. Int. Ed. 55(52), 16035–16038 (2016)Google Scholar
  60. 60.
    Mahl, D.: Synthese, Löslichkeit und Stabilität von Gold-Nanopartikeln in biologischen Medien. University of Duisburg-Essen, Essen (2011)Google Scholar
  61. 61.
    Nowack, B., Krug, H.F., Height, M.: 120 years of nanosilver history: implications for policy makers. Environ. Sci. Technol. 45(4), 1177–1183 (2011)CrossRefADSGoogle Scholar
  62. 62.
    Xu, H., Suslick, K.S.: Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4(6), 3209–3214 (2010)CrossRefGoogle Scholar
  63. 63.
    Chen, J., et al.: A simple and versatile mini-arc plasma source for nanocrystal synthesis. J. Nanopart. Res. 9(2), 203–213 (2007)CrossRefADSMathSciNetGoogle Scholar
  64. 64.
    Wagener, P., et al.: Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. PCCP 15(9), 3068–3074 (2013)CrossRefADSGoogle Scholar
  65. 65.
    Lea, M.C.: Allotropic forms of silver. Am. J. Sci. (Series 3) 37(222), 476–491 (1889)Google Scholar
  66. 66.
    Kittler, S., et al.: Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 22(16), 4548–4554 (2010)CrossRefGoogle Scholar
  67. 67.
    Banerjee, S., et al.: Structural evolution of silver nanoparticles during wet-chemical synthesis. Chem. Mater. 26(2), 951–957 (2014)CrossRefGoogle Scholar
  68. 68.
    Firdhouse, M.J., Lalitha, P.: Biosynthesis of silver nanoparticles and its applications. J. Nanotechnol. 2015, 18 (2015)CrossRefGoogle Scholar
  69. 69.
    Prabhu, S., Poulose, E.K.: Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2(1), 32 (2012)CrossRefGoogle Scholar
  70. 70.
    Mavani, K., Shah, M.: Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent (2013)Google Scholar
  71. 71.
    Kim, D., Jeong, S., Moon, J.: Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17(16), 4019–4024 (2006)CrossRefADSGoogle Scholar
  72. 72.
    Zhao, T., et al.: Size-controlled preparation of silver nanoparticles by a modified polyol method. Colloid Surf A: Physicochem. Eng. Aspects 366(1), 197–202 (2010)CrossRefGoogle Scholar
  73. 73.
    Won, H., et al.: Preparation of porous silver particles using ammonium formate and its formation mechanism. Chem. Eng. J. 156, 459–464 (2010)Google Scholar
  74. 74.
    Chen, S., Fan, Z., Carroll, D.L.: Silver nanodisks: synthesis, characterization, and self-assembly. J. Phys. Chem. B 106(42), 10777–10781 (2002)CrossRefGoogle Scholar
  75. 75.
    Rycenga, M., McLellan, J.M., Xia, Y.: Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater. 20(12), 2416–2420 (2008)CrossRefGoogle Scholar
  76. 76.
    Schuette, W.M., Buhro, W.E.: Silver chloride as a heterogeneous nucleant for the growth of silver nanowires. ACS Nano 7(5), 3844–3853 (2013)CrossRefGoogle Scholar
  77. 77.
    Zinchenko, A.A., Yoshikawa, K., Baigl, D.: DNA-templated silver nanorings. Adv. Mater. 17(23), 2820–2823 (2005)CrossRefGoogle Scholar
  78. 78.
    Wiley, B.J., et al.: Right bipyramids of silver: a new shape derived from single twinned seeds. Nano Lett. 6(4), 765–768 (2006)CrossRefADSGoogle Scholar
  79. 79.
    Im, S.H., et al.: Large-scale synthesis of silver nanocubes: the role of hcl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed. 44(14), 2154–2157 (2005)CrossRefGoogle Scholar
  80. 80.
    Darmanin, T., et al.: Microwave-assisted synthesis of silver nanoprisms/nanoplates using a “modified polyol process”. Colloids Surf. Physicochem. Eng. Aspects 395, 145–151 (2012)CrossRefGoogle Scholar
  81. 81.
    Helmlinger, J., et al.: On the crystallography of silver nanoparticles with different shapes. Cryst. Growth Des. 16(7), 3677–3687 (2016)CrossRefGoogle Scholar
  82. 82.
    Wiley, B., et al.: Shape-controlled synthesis of metal nanostructures: the case of silver. Chem. – A Eur. J. 11(2), 454–463 (2005)Google Scholar
  83. 83.
    Ye, X., et al.: Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl. Acad. Sci. USA 107(52), 22430–22435 (2010)CrossRefADSGoogle Scholar
  84. 84.
    Bratlie, K.M., et al.: Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 7(10), 3097–3101 (2007)CrossRefADSGoogle Scholar
  85. 85.
    Tian, N., et al.: Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825), 732–735 (2007)CrossRefADSGoogle Scholar
  86. 86.
    Roldan Cuenya, B.: Metal nanoparticle catalysts beginning to shape-up. Acc. Chem. Res. 46(8), 1682–1691 (2013)CrossRefGoogle Scholar
  87. 87.
    Schmid, G.: Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 92(8), 1709–1727 (1992)Google Scholar
  88. 88.
    Song, H., et al.: Pt nanocrystals: shape control and langmuir–blodgett monolayer formation. J. Phys. Chem. B 109(1), 188–193 (2005)CrossRefGoogle Scholar
  89. 89.
    Kang, Y., et al.: Shape-controlled synthesis of Pt nanocrystals: the role of metal carbonyls. ACS Nano 7(1), 645–653 (2013)CrossRefGoogle Scholar
  90. 90.
    Henglein, A., Ershov, B.G., Malow, M.: Absorption spectrum and some chemical reactions of colloidal platinum in aqueous solution. J. Phys. Chem. 99(38), 14129–14136 (1995)CrossRefGoogle Scholar
  91. 91.
    Kang, Y., Ye, X., Murray, C.B.: Size- and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. Angew. Chem. Int. Ed. Engl. 49(35), 6156–6159 (2010)CrossRefGoogle Scholar
  92. 92.
    Zhao, S.-Y., et al.: Preparation, phase transfer, and self-assembled monolayers of cubic Pt nanoparticles. Langmuir 18(8), 3315–3318 (2002)CrossRefGoogle Scholar
  93. 93.
    Lee, S.-A., et al.: Nanoparticle synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cells. J. Electrochem. Soc. 149(10), A1299–A1304 (2002)CrossRefGoogle Scholar
  94. 94.
    Liu, Z., et al.: Nanosized Pt and PtRu colloids as precursors for direct methanol fuel cell catalysts. J. Mater. Chem. 13(12), 3049–3052 (2003)CrossRefGoogle Scholar
  95. 95.
    Herricks, T., Chen, J., Xia, Y.: Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Lett. 4(12), 2367–2371 (2004)CrossRefADSGoogle Scholar
  96. 96.
    Fujimoto, T., et al.: Sonochemical preparation of single-dispersion metal nanoparticles from metal salts. Chem. Mater. 13(3), 1057–1060 (2001)CrossRefGoogle Scholar
  97. 97.
    Falicov, L.M., Somorjai, G.A.: Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence. Proc. Natl. Acad. Sci. USA 82(8), 2207–2211 (1985)CrossRefADSGoogle Scholar
  98. 98.
    Wang, C., et al.: A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem. Int. Ed. 47(19), 3588–3591 (2008)CrossRefGoogle Scholar
  99. 99.
    Teng, X., Yang, H.: Synthesis of platinum multipods: an induced anisotropic growth. Nano Lett. 5(5), 885–891 (2005)CrossRefADSGoogle Scholar
  100. 100.
    Chen, J., et al.: Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J. Am. Chem. Soc. 126(35), 10854–10855 (2004)CrossRefGoogle Scholar
  101. 101.
    Barcikowski, S., Compagnini, G.: Advanced nanoparticle generation and excitation by lasers in liquids. PCCP 15(9), 3022–3026 (2013)CrossRefADSGoogle Scholar
  102. 102.
    Angelov, S.D., et al.: Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis. J. Nanobiotechnology 14(1), 3 (2016)CrossRefGoogle Scholar
  103. 103.
    Khan, F.A.: Biotechnology Fundamentals. CRC Press, Boca Raton (2011)Google Scholar
  104. 104.
    Seku, K., et al.: Hydrothermal synthesis of Copper nanoparticles, characterization and their biological applications. Int. J. Nano Dimens. 9(1), 7–14 (2018)ADSGoogle Scholar
  105. 105.
    Sanchez-Sanhueza, G., et al.: Synthesis of Copper nanowires and their antimicrobial activity on strains isolated persistent endodontic infections. J. Nanosci. Nanotechnol. 18(7), 4507–4514 (2018)CrossRefGoogle Scholar
  106. 106.
    Shabnam, L., et al.: Doped graphene/Cu nanocomposite: a high sensitivity non-enzymatic glucose sensor for food. Food Chem. 221, 751–759 (2017)CrossRefGoogle Scholar
  107. 107.
    Lee, Y., et al.: Large-scale synthesis of Copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19(41), 415604 (2008)CrossRefGoogle Scholar
  108. 108.
    Ranu, B.C., et al.: Copper nanoparticle-catalyzed carbon-carbon and carbon-heteroatom bond formation with a greener perspective. ChemSusChem 5(1), 22–44 (2012)Google Scholar
  109. 109.
    Allen, S.E., et al.: Aerobic copper-catalyzed organic reactions. Chem. Rev. 113(8), 6234–6458 (2013)CrossRefGoogle Scholar
  110. 110.
    Kaur, R., Pal, B.: Cu nanostructures of various shapes and sizes as superior catalysts for nitro-aromatic reduction and co-catalyst for Cu/TiO2 photocatalysis. Appl. Catal. A 491, 28–36 (2015)CrossRefGoogle Scholar
  111. 111.
    Parveen, F., et al.: Copper nanoparticles: synthesis methods and its light harvesting performance. Sol. Energy Mater. Sol. Cells 144, 371–382 (2016)CrossRefGoogle Scholar
  112. 112.
    Tilaki, R.M., Iraji zad, A., Mahdavi, S.M.: Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. Appl. Phys. A 88(2), 415–419 (2007)Google Scholar
  113. 113.
    Salavati-Niasari, M., Fereshteh, Z., Davar, F.: Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron 28(1), 126–130 (2009)CrossRefGoogle Scholar
  114. 114.
    Park, B.K., et al.: Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 515(19), 7706–7711 (2007)CrossRefADSGoogle Scholar
  115. 115.
    Woo, K., et al.: Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate. Langmuir 25(1), 429–433 (2009)CrossRefGoogle Scholar
  116. 116.
    Khan, A., et al.: A chemical reduction approach to the synthesis of copper nanoparticles. Int. Nano Lett. 6(1), 21–26 (2016)CrossRefMathSciNetGoogle Scholar
  117. 117.
    Gawande, M.B., et al.: Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116(6), 3722–3811 (2016)CrossRefGoogle Scholar
  118. 118.
    Wu, C., Mosher, B.P., Zeng, T.: One-step green route to narrowly dispersed copper nanocrystals. J. Nanopart. Res. 8(6), 965–969 (2006)CrossRefADSGoogle Scholar
  119. 119.
    Thi My Dung, D., et al.: Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2(1), 015009 (2011)Google Scholar
  120. 120.
    Chernogorenko, V.B., Tasybaeva, S.T.: Mechanism of chemical, reduction of copper(II) by hypophosphite ion. Russ. J. Appl. Chem. 68(4), 461–464 (1995)Google Scholar
  121. 121.
    Jeong, S., et al.: Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by Ink-jet printing. Adv. Funct. Mater. 18(5), 679–686 (2008)CrossRefGoogle Scholar
  122. 122.
    Wei, Y., et al.: Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J. Phys. Chem. C 114(37), 15612–15616 (2010)CrossRefGoogle Scholar
  123. 123.
    Ferrando, R., Jellinek, J., Johnston, R.L.: Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108(3), 845–910 (2008)CrossRefGoogle Scholar
  124. 124.
    Wanjala, B.N., et al.: Nanoscale alloying, phase-segregation, and core–shell evolution of gold–platinum nanoparticles and their electrocatalytic effect on oxygen reduction reaction. Chem. Mater. 22(14), 4282–4294 (2010)CrossRefGoogle Scholar
  125. 125.
    Tahir, M., Tahir, B., Amin, N.A.S.: Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels. Appl. Catal. B 204, 548–560 (2017)CrossRefGoogle Scholar
  126. 126.
    Bennett, E., et al.: A synthetic route for the effective preparation of metal alloy nanoparticles and their use as active electrocatalysts. ACS Catal. 6(3), 1533–1539 (2016)CrossRefGoogle Scholar
  127. 127.
    Ristig, S., et al.: Synthesis, characterization and in vitro effects of 7 nm alloyed silver–gold nanoparticles. Beilstein J. Nanotechnol. 6, 1212–1220 (2015)CrossRefGoogle Scholar
  128. 128.
    Taylor, U., et al.: Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development. Beilstein J. Nanotechnol. 6, 651–664 (2015)CrossRefGoogle Scholar
  129. 129.
    Ruban, A.V., Skriver, H.L., Nørskov, J.K.: Surface segregation energies in transition-metal alloys. PhRvB 59(24), 15990–16000 (1999)ADSGoogle Scholar
  130. 130.
    Molenbroek, A.M., Haukka, S., Clausen, B.S.: Alloying in Cu/Pd Nanoparticle Catalysts. J. Phys. Chem. B 102(52), 10680–10689 (1998)CrossRefGoogle Scholar
  131. 131.
    Nanosized clusters on and in supports—perspectives for future catalysis, in metal clusters in chemistryGoogle Scholar
  132. 132.
    Andrews, M.P., O’Brien, S.C.: Gas-phase “molecular alloys” of bulk immiscible elements: iron-silver (FexAgy). J. Phys. Chem. 96(21), 8233–8241 (1992)CrossRefGoogle Scholar
  133. 133.
    Cortie, M.B., McDonagh, A.M.: Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 111(6), 3713–3735 (2011)CrossRefGoogle Scholar
  134. 134.
    Zhang, D., Gökce, B., Barcikowski, S.: Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117(5), 3990–4103 (2017)CrossRefGoogle Scholar
  135. 135.
    Simakin, A.V., et al.: Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Phys. A 79(4), 1127–1132 (2004)CrossRefADSGoogle Scholar
  136. 136.
    Tiedemann, D., et al.: Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes. Analyst 139(5), 931–942 (2014)CrossRefADSGoogle Scholar
  137. 137.
    Goia, D.V., Matijevic, E.: Preparation of monodispersed metal particles. New J. Chem. 22(11), 1203–1215 (1998)Google Scholar
  138. 138.
    Reetz, M.T., Helbig, W.: Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 116(16), 7401–7402 (1994)CrossRefGoogle Scholar
  139. 139.
    Tan, C., et al.: A self-supporting bimetallic Au@Pt core-shell nanoparticle electrocatalyst for the synergistic enhancement of methanol oxidation. Sci. Rep. 7, 6347 (2017)CrossRefADSGoogle Scholar
  140. 140.
    Rostek, A., Breisch, M., Loza, K., Garcia, P.R.A.F., Oliveira, C.L.P., Prymak, O., Heggen, M., Köller, M., Sengstock, C., Epple, M.: ChemistrySelect 3, 4994 (2018)Google Scholar
  141. 141.
    Schlücker, S.: Surface-enhanced raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53(19), 4756–4795 (2014)CrossRefGoogle Scholar
  142. 142.
    Rodriguez-Gonzalez, B., et al.: Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties. J. Mater. Chem. 15(17), 1755–1759 (2005)CrossRefGoogle Scholar
  143. 143.
    Lintz, H.G., Kung, H.H.: Transition Metal Oxides: Surface Chemistry and Catalysis, Vol. 45, Studies in Surface Science and Catalysis, Elsevier, Amsterdam, Oxford, New York, Tokyo (1989)Google Scholar
  144. 144.
    Fernández‐García, J.A.R.: Synthesis, Properties, and Applications of Oxide Nanomaterials. Wiley, New York (2006)Google Scholar
  145. 145.
    Miller, D.R., Akbar, S.A., Morris, P.A.: Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B: Chem. 204, 250–272 (2014)CrossRefGoogle Scholar
  146. 146.
    Cui, T.H., Hua, F., Lvov, Y.: FET fabricated by layer-by-layer nanoassembly. IEEE Trans. Electron Devices 51(3), 503–506 (2004)CrossRefADSGoogle Scholar
  147. 147.
    Jeong, S.J., et al.: Characteristics of piezoelectric multilayer devices containing metal-oxide multicomponent electrode. Ferroelectrics 338, 425- +  (2006)Google Scholar
  148. 148.
    Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004)CrossRefGoogle Scholar
  149. 149.
    Hu, J.S., et al.: Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv. Mater. 20(15), 2977–2982 (2008)CrossRefGoogle Scholar
  150. 150.
    Wang, F.Y., et al.: Manipulating III–V nanowire transistor performance via surface decoration of metal-oxide nanoparticles. Adv. Mater. Interfaces 4(12), 1700260 (2017)Google Scholar
  151. 151.
    Kumar, K.Y., et al.: Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol. 246, 125–136 (2013)CrossRefADSGoogle Scholar
  152. 152.
    Stoimenov, P.K., et al.: Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17), 6679–6686 (2002)CrossRefGoogle Scholar
  153. 153.
    Serpone, N., Dondi, D., Albini, A.: Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare product. Inorg. Chim. Acta 360(3), 794–802 (2007)CrossRefGoogle Scholar
  154. 154.
    Wang, H.T., et al.: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015)Google Scholar
  155. 155.
    Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16(25), R829 (2004)Google Scholar
  156. 156.
    Moezzi, A., McDonagh, A.M., Cortie, M.B.: Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. 185–186, 1–22 (2012)CrossRefGoogle Scholar
  157. 157.
    Frederickson, C.J., Koh, J.-Y., Bush, A.I.: The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6, 449 (2005)CrossRefGoogle Scholar
  158. 158.
  159. 159.
    Espitia, P.J.P., et al.: Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5(5), 1447–1464 (2012)CrossRefGoogle Scholar
  160. 160.
    Casey, P.: 1—Nanoparticle technologies and applications. In: Nanostructure Control of Materials, pp. 1–31. Woodhead Publishing (2006)Google Scholar
  161. 161.
    Aghababazadeh, R., et al.: ZnO nanoparticles synthesised by mechanochemical processing. J. Phys: Conf. Ser. 26(1), 312 (2006)ADSGoogle Scholar
  162. 162.
    Swihart, M.T.: Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8(1), 127–133 (2003)CrossRefGoogle Scholar
  163. 163.
    Willander, M., et al.: ZnO nanowires: chemical growth, electrodeposition, and application to intracellular nano‐sensors. Phys. Status Solidi C 5(9), 3076–3083 (2008)Google Scholar
  164. 164.
    Hu, H., Deng, C., Huang, X.: Hydrothermal growth of center-hollow multigonal star-shaped ZnO architectures assembled by hexagonal conic nanotubes. Mater. Chem. Phys. 121(1), 364–369 (2010)CrossRefGoogle Scholar
  165. 165.
    Arya, S.K., et al.: Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal. Chim. Acta 737, 1–21 (2012)CrossRefGoogle Scholar
  166. 166.
    Zhao, J., Wu, L., Zhi, J.: Fabrication of micropatterned ZnO/SiO2 core/shell nanorod arrays on a nanocrystalline diamond film and their application to DNA hybridization detection. J. Mater. Chem. 18(21), 2459–2465 (2008)CrossRefADSGoogle Scholar
  167. 167.
    Zeng, H., et al.: Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions. J. Phys. Chem. B 111(51), 14311–14317 (2007)CrossRefGoogle Scholar
  168. 168.
    Wei, A., et al.: Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl. Phys. Lett. 89(12), 123902 (2006)CrossRefADSGoogle Scholar
  169. 169.
    Yu, L., Qu, F., Wu, X.: Solution synthesis and optimization of ZnO nanowindmills. Appl. Surf. Sci. 257(17), 7432–7435 (2011)CrossRefADSGoogle Scholar
  170. 170.
    Daumann, S., et al.: Water-free synthesis of ZnO quantum dots for application as an electron injection layer in light-emitting electrochemical cells. J. Mater. Chem. C 5(9), 2344–2351 (2017)CrossRefGoogle Scholar
  171. 171.
    Dai, Z., et al.: Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor. Biosens. Bioelectron. 24(5), 1286–1291 (2009)CrossRefGoogle Scholar
  172. 172.
    Lei, Y., et al.: Improved glucose electrochemical biosensor by appropriate immobilization of nano-ZnO. Colloids Surf. B. Biointerfaces 82(1), 168–172 (2011)CrossRefGoogle Scholar
  173. 173.
    Liu, J., et al.: Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: direct solution synthesis, photoluminescence, and field emission. J. Phys. Chem. C 111(13), 4990–4997 (2007)CrossRefGoogle Scholar
  174. 174.
    Xia, C., et al.: Synthesis of nanochain-assembled ZnO flowers and their application to dopamine sensing. Sensors Actuators B: Chem. 147(2), 629–634 (2010)CrossRefGoogle Scholar
  175. 175.
    Zhang, Y., et al.: An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles. J. Electroanal. Chem. 627(1), 9–14 (2009)CrossRefGoogle Scholar
  176. 176.
    Brayner, R., et al.: ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies. Langmuir 26(9), 6522–6528 (2010)CrossRefGoogle Scholar
  177. 177.
    Shukla, R.K., et al.: ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol. In Vitro 25(1), 231–241 (2011)CrossRefGoogle Scholar
  178. 178.
    Ortlieb, M.: White giant or white dwarf?: particle size distribution measurements of TiO2. GIT Lab. J. Eur. 14, 42–43 (2010)Google Scholar
  179. 179.
    Taheri, M., Jahanfar, M., Ogino, K.: Self-cleaning traffic marking paint. Surf. Interfaces 9, 13–20 (2017)CrossRefGoogle Scholar
  180. 180.
    Fadhilah, N., et al.: Self-cleaning limestone paint modified by nanoparticles TiO2 synthesized from TiCl3 as precursors and PEG6000 as dispersant. Bull. Chem. React. Eng. Catal. 12(3), 351–356 (2017)CrossRefGoogle Scholar
  181. 181.
    Du, Z.F., et al.: Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation. Appl. Surf. Sci. 435, 626–634 (2018)CrossRefADSGoogle Scholar
  182. 182.
    Olariu, M.A., et al.: Electrical properties of polyimide composite films containing TiO2 nanotubes. Polym. Compos. 38(11), 2584–2593 (2017)CrossRefGoogle Scholar
  183. 183.
    Xu, W.J., et al.: Superhydrophobic titania nanoparticles for fabrication of paper-based analytical devices: an example of heavy metals assays. Talanta 181, 333–339 (2018)CrossRefGoogle Scholar
  184. 184.
    Imran, M., et al.: Oxygen-deficient TiO(2-x)methylene blue colloids: highly efficient photoreversible intelligent ink. Langmuir 32(35), 8980–8987 (2016)CrossRefGoogle Scholar
  185. 185.
    Ruiz, P.A., et al.: Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut 66(7), 1216–1224 (2017)CrossRefGoogle Scholar
  186. 186.
    Rompelberg, C., et al.: Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology 10(10), 1404–1414 (2016)CrossRefGoogle Scholar
  187. 187.
    Choi, S., et al.: A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO2 and ZnO. Sci. Total Environ. 625, 1321–1329 (2018)CrossRefADSGoogle Scholar
  188. 188.
    Nohynek, G.J., et al.: Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 37(3), 251–277 (2007)CrossRefGoogle Scholar
  189. 189.
    Lewicka, Z.A., et al.: Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients. Journal of Photochemistry and Photobiology a-Chemistry 263, 24–33 (2013)CrossRefGoogle Scholar
  190. 190.
    de la Calle, I., et al.: Screening of TiO2 and Au nanoparticles in cosmetics and determination of elemental impurities by multiple techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES). Talanta 171, 291–306 (2017)CrossRefGoogle Scholar
  191. 191.
    Titanium Compounds, Inorganic, in Kirk‐Othmer Encyclopedia of Chemical TechnologyGoogle Scholar
  192. 192.
    G¨¢zquez, M.J.s., et al.: A review of the production cycle of titanium dioxide pigment. Mater. Sci. Appl. 05(07), 18 (2014)Google Scholar
  193. 193.
    Behnajady, M.A., et al.: Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination 278(1), 10–17 (2011)CrossRefGoogle Scholar
  194. 194.
    Burda, C., et al.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)CrossRefGoogle Scholar
  195. 195.
    Carp, O., Huisman, C.L., Reller, A.: Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32(1), 33–177 (2004)CrossRefGoogle Scholar
  196. 196.
    Qian, Y., et al.: Preparation of ultrafine powders of TiO2 by hydrothermal H2O2 oxidation starting from metallic Ti. J. Mater. Chem. 3(2), 203–205 (1993)CrossRefGoogle Scholar
  197. 197.
    Kim, D.H., et al.: Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying. J. Alloys Compd. 375(1), 259–264 (2004)CrossRefGoogle Scholar
  198. 198.
    Oh, S.-M., Ishigaki, T.: Preparation of pure rutile and anatase TiO2 nanopowders using RF thermal plasma. Thin Solid Films 457(1), 186–191 (2004)CrossRefADSGoogle Scholar
  199. 199.
    Susanna, A., et al.: Catalytic effect of ZnO anchored silica nanoparticles on rubber vulcanization and cross-link formation. Eur. Polym. J. 93, 63–74 (2017)CrossRefGoogle Scholar
  200. 200.
    Liu, Z.J., Zhang, Y.: Enhanced mechanical and thermal properties of SBR composites by introducing graphene oxide nanosheets decorated with silica particles. Compos. Part A-Appl. Sci. Manuf. 102, 236–242 (2017)CrossRefGoogle Scholar
  201. 201.
    Zhao, X.L., et al.: Surface modification of ultra-high molecular weight polyethylene fiber by different kinds of SiO2 nanoparticles. Polym. Compos. 38(9), 1928–1936 (2017)CrossRefGoogle Scholar
  202. 202.
    Mosquera, M.J., Carrascosa, L.A.M., Badreldin, N.: Producing superhydrophobic/oleophobic coatings on cultural heritage building materials. Pure Appl. Chem. 90(3), 551–561 (2018)CrossRefGoogle Scholar
  203. 203.
    Bernal, J., et al.: Fresh and mechanical behavior of a self-compacting concrete with additions of nano-silica, silica fume and ternary mixtures. Constr. Build. Mater. 160, 196–210 (2018)CrossRefGoogle Scholar
  204. 204.
    Wiilknitz, P.: Cleaning power and abrasivity of European toothpastes. Adv. Dental Res. 11(4), 576–579 (1997)CrossRefGoogle Scholar
  205. 205.
    Younes, M., et al.: Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J. 16(1), e05088 (2018)MathSciNetGoogle Scholar
  206. 206.
    Athinarayanan, J., et al.: Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol. Toxicol. 30(2), 89–100 (2014)CrossRefGoogle Scholar
  207. 207.
    Peters, R., et al.: Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 6(3), 2441–2451 (2012)CrossRefADSGoogle Scholar
  208. 208.
    Taylor-Pashow, K.M.L., et al.: Hybrid nanomaterials for biomedical applications. Chem. Commun. 46(32), 5832–5849 (2010)CrossRefGoogle Scholar
  209. 209.
    Wang, L., Zhao, W., Tan, W.: Bioconjugated silica nanoparticles: development and applications. Nano Research 1(2), 99–115 (2008)CrossRefGoogle Scholar
  210. 210.
    Shirshahi, V., Soltani, M.: Solid silica nanoparticles: applications in molecular imaging. Contrast Media Mol. Imaging 10(1), 1–17 (2015)CrossRefGoogle Scholar
  211. 211.
    Teoh, W.Y., Amal, R., Madler, L.: Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2(8), 1324–1347 (2010)CrossRefADSGoogle Scholar
  212. 212.
    Wolf, M.: Immer eine Idee besser: Forscher und Erfinder der Degussa. Degussa AG, Frankfurt am Main (1998)Google Scholar
  213. 213.
    Garrett, P.: Defoaming. CRC Press, Boca Raton (1992)Google Scholar
  214. 214.
  215. 215.
    Stöber, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62–69 (1968)CrossRefADSGoogle Scholar
  216. 216.
    Shimura, N., Ogawa, M.: Preparation of surfactant templated nanoporous silica spherical particles by the Stöber method. Effect of solvent composition on the particle size. JMatS 42(14), 5299–5306 (2007)Google Scholar
  217. 217.
    Ow, H., et al.: Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 5(1), 113–117 (2005)CrossRefADSGoogle Scholar
  218. 218.
    Arriagada, F.J., Osseo-Asare, K.: Phase and dispersion stability effects in the synthesis of silica nanoparticles in a non-ionic reverse microemulsion. ColSu 69(2), 105–115 (1992)Google Scholar
  219. 219.
    Huang, X., et al.: The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31(3), 438–448 (2010)CrossRefADSGoogle Scholar
  220. 220.
    Diagnosis and initial management of nonmalignant diseases related to asbestos. Am. J. Respir. Crit. Care Med. 170(6), 691–715 (2004)Google Scholar
  221. 221.
    Trewyn, B.G., Whitman, C.M., Lin, V.S.Y.: Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett. 4(11), 2139–2143 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Inorganic ChemistryUniversity of Duisburg-EssenEssenGermany

Personalised recommendations