Advertisement

Introduction: Analysis of the Problems of Modeling of Hydrodynamics and Interphase Heat and Mass Exchange in the Processes with Spraying of Liquid in a Gas

  • Nikolay N. Simakov
Chapter
Part of the Innovation and Discovery in Russian Science and Engineering book series (IDRSE)

Abstract

Spraying of liquid in a gas, for example, using nozzles, is one of the three ways to increase the surface of phase contact and the intensity of interfacial heat and mass transfer processes. Spray processes are widely used in chemical technologies, energy, and transport. At the same time, theoretical methods for calculating such processes are not developed enough, which in turn does not allow reliably designing high-efficiency spray devices and is therefore a serious scientific problem.

References

  1. 1.
    Nigmatulin, R. I. (1987). Dynamics of multiphase media, part 1. Moscow: Nauka.Google Scholar
  2. 2.
    Kasatkin, A. G. (1973). Basic processes and apparatuses of chemical technology. Moscow: Khimiya.Google Scholar
  3. 3.
    Kafarov, V. V. (1979). Fundamentals of mass transfer. Moscow: Vysshaya Shkola.Google Scholar
  4. 4.
    Wittmann, A. A., Katznelson, B. D., & Paleev, I. I. (1962). Spraying liquid nozzles. Moscow: Gosenergoizdat.Google Scholar
  5. 5.
    Borodin, V. A., et al. (1967). Sprays of liquids. Moscow: Mashinostroenie.Google Scholar
  6. 6.
    Dityakin, Y. F., et al. (1977). Sprays of liquids. Moscow: Mashinostroenie.Google Scholar
  7. 7.
    Pazhi, D. G., Prakhov, A. M., & Ravikovich, B. B. (1971). Nozzles in the chemical industry. Moscow: Khimiya.Google Scholar
  8. 8.
    Pazhi, D. G., Koryagin, A. A., & Lamm, E. L. (1975). Spraying devices in the chemical industry. Moscow: Khimiya.Google Scholar
  9. 9.
    Pazhi, D. G., & Galustov, V. S. (1979). Sprays of liquid (p. 216). Moscow: Khimiya.Google Scholar
  10. 10.
    Pazhi, D. G., & Galustov, V. S. (1984). Fundamentals of spraying technology. Moscow: Khimiya.Google Scholar
  11. 11.
    Golovachevsky, Y. A. (1974). Sprinklers and nozzles of scrubbers of the chemical industry. Moscow: Mashinostroenie.Google Scholar
  12. 12.
    Ramm, V. M. (1976). Absorption of gases. Moscow: Khimiya.Google Scholar
  13. 13.
    Bird, R., et al. (1960). Transport phenomena. New York: Wiley. Khimiya, Moscow, 1974.Google Scholar
  14. 14.
    Protodyakonov, I. O., Marculevich, M. A., & Markov, A. V. (1981). Phenomena of transfer in the processes of chemical technology (p. 263). Moscow: Khimiya.Google Scholar
  15. 15.
    Protodyakonov, I. O., & Chesnokov, Y. G. (1982). Hydromechanics of the fluidized bed. Leningrad: Khimiya.Google Scholar
  16. 16.
    Protodyakonov, I. O., & Bogdanov, S. R. (1983). Statistical theory of transfer phenomena in the processes of chemical technology. Leningrad: Chemia.Google Scholar
  17. 17.
    Protodyakonov, I. O., & Syshchikov, Y. V. (1983). Turbulence in the processes of chemical technology. Leningrad: Nauka.Google Scholar
  18. 18.
    Goldshtik, M. A. (1984). Transfer processes in a granular layer. Novosibirsk: ITF SB of the USSR Academy of Sciences.Google Scholar
  19. 19.
    Romankov, P. G., & Kurochkina, M. A. (1982). Hydro-mechanical processes of chemical technology. Leningrad: Khimiya.Google Scholar
  20. 20.
    Zhorov, Y. M. (1978). Modeling of physical and chemical processes of oil refining and petro-chemistry. Moscow: Khimiya.Google Scholar
  21. 21.
    Brounshtein, B. I., & Fishbein, G. A. (1977). Hydrodynamics, mass and heat transfer in disperse systems. Leningrad: Khimiya.Google Scholar
  22. 22.
    Aniskin, S. V. Dissertation, LTI CBP, Leningrad.Google Scholar
  23. 23.
    Babukha, G. L., & Shrayber, A. A. (1972). Interaction of particles of a polydisperse material in two-phase flows. Kiev: Naukova Dumka.Google Scholar
  24. 24.
    Gatsev, V. A., et al. (1974). Collision of particles in mutually perpendicular flows of sprayers of chemical technology. In Chemical technology (pp. 67–70). Yaroslavl: Yaroslavl Polytechnic Institute.Google Scholar
  25. 25.
    Gatsev, V. A., et al. (1974). On the collision of particles in the sputtered streams of chemical engineering spraying machines. In Chemical technology (pp. 71–76). Yaroslavl: Yaroslavl Polytechnic Institute.Google Scholar
  26. 26.
    Arkhipov, B. A., et al. (1978). Experimental study of droplets interaction in collisions. Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki (Journal of Appleid Mechanics and Technical. Physics), (2), 21–24.Google Scholar
  27. 27.
    Babukha, G. L. (1972). Experimental study of the stability of droplets in collisions. In Teplofizika i teplotekhnika (Thermo physics and heat engineering) (Vol. 21, pp. 89–96). Kiev: Naukova Dumka.Google Scholar
  28. 28.
    Borodin, V. A., et al. (1982). On the fragmentation of a spherical droplet in a gas stream. Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki (Journal of Applied Mechanics Technical Physics), (1), 65–92.Google Scholar
  29. 29.
    Volynsky, M. S., & Lipatov, A. S. (1970). Deformation and fragmentation of drops in the gas flow. Inzhenerno-Fizicheskiy Zhurnal (Engineering and Physics Journal), 18(5), 838–843.Google Scholar
  30. 30.
    Honor, A. L. (1978). Movement and spreading of a drop in the gas flow. In Some questions of mechanics of continuous media (pp. 173–187). Moscow.Google Scholar
  31. 31.
    Honor, A. L., & Zolotova, N. V. (1981). Braking and deformation of a liquid drop in a gas stream, Izvestiya AN SSSR. Mekh. Zhidkosti i Gaza (Mechanics of Liquid and Gas), (2), 58–69.Google Scholar
  32. 32.
    Honor, A. L., & Zolotova, N. V. (1981). Decay of the drop in the gas flow. In Gas dynamics of nonequilibrium processes (pp. 42–45). Novosibirsk: Institute of Theoretical and Applied Mechanics of SB AS USSR.Google Scholar
  33. 33.
    Klyachko, L. A. (1983). To the theory of fragmentation of a drop by a gas flow. Inzhenerno-Fizicheskiy Zhurnal (Engineering and Physics Journal), 3(3), 544–557.Google Scholar
  34. 34.
    Simons. (1976). Acceleration and deformation of a liquid drop. Raketn. Tekhn. i Kosmonavtika (Rocket Technology and Astronautics), 14(2), 58–70.Google Scholar
  35. 35.
    Borisov, A. A., et al. (1981). On the regimes of fragmentation of drops and the criteria for their existence. Inzhenerno-Fizicheskiy Zhurnal (Engineering and Physics Journal), 40(1), 64–70.MathSciNetGoogle Scholar
  36. 36.
    Gelfand, B. E., et al. (1971). Deformation of jets and drops of liquid in a drifting gas stream, Izvestiya AN SSSR. Mekh. Zhidkosti i Gaza (Mechanics of Fluid and Gas), (3), 82–88.Google Scholar
  37. 37.
    Gelfand, B. E., et al. (1974). Varieties of crushing droplets in shock waves and their characteristics. Inzhenerno-Fizicheskiy Zhurnal (Engineering and Physics Journal), 37(1), 119–126.Google Scholar
  38. 38.
    Ivandayev, A. I., et al. (1981). Gas dynamics of multiphase media. Shock and detonation waves in gas scales. In Itogi nauki i tekhniki, VINITI, Mekh. zhidkosti i gaza (The Results of Science and Technology, AISATI, Mechanics of Fluid and Gas, Moscow), 16, 209–290.Google Scholar
  39. 39.
    Korsunov, Y. A., & Tishin, A. P. (1974). An experimental study of the crushing of liquid droplets at low Reynolds numbers. Izvestiya AN SSSR. Mekh. Zhidkosti i Gaza (Mechanics of Fluid and Gas), (2), 182–186.Google Scholar
  40. 40.
    (1982). Itogi nauki i tekhniki, VINITI, Mekh. zhidkosti i gaza (The Results of Science and Technology, AISATI, Mechanics of Fluid and Gas, Moscow), 17, 256.Google Scholar
  41. 41.
    Gelperin, N. I., et al. (1974). Spraying liquid with mechanical injectors. Teor. Osnovy Khim. Tekhnol. (Theory Fundamentals of Chemical Technology), 8(3), 463–467.Google Scholar
  42. 42.
    Gelperin, N. I., et al. (1972). On the hydrodynamics of liquid-gas injectors with the dispersion of a working fluid. Teor. Osnovy Khim. Tekhnol. (Theory Fundamentals of Chemical Technology), 6(3), 434–439.Google Scholar
  43. 43.
    Zvezdin, Y. G. (1972). Investigation of a liquid-gas injector with dispersion of a working fluid. Dissertation, Moscow Institute of Fine Chemical Technologies named after M.V. Lomonosov.Google Scholar
  44. 44.
    Zvezdin, Y. G., & Basargin, B. N. (1982). Hydrodynamic calculation of spraying of liquid by mechanical injectors. Teor. Osnovy Khim. Tekhnol. (Theory Fundamentals of Chemical Technology), 16(5), 715–716.Google Scholar
  45. 45.
    Zvezdin, Y. G., et al. (1985). Hydrodynamics and heat exchange when spraying liquid in a high-temperature gas stream. Teor. Osnovy Khim. Tekhnol. (Theory Fundamentals of Chemical Technology), 19(3), 354–359.Google Scholar
  46. 46.
    Basargin, B. N. (1974). Investigation of hydrodynamics and mass-transfer capacity of injection-type devices. Dissertation, Moscow Institute of Fine Chemical Technologies named after M.V. Lomonosov.Google Scholar
  47. 47.
    Rychkov, A. D., & Shraiber, A. A. (1985). Axisymmetric polydisperse two-phase flow with coagulation and fragmentation of particles for an arbitrary fragment distribution by mass and velocity. Izvestiya AN SSSR. Mekh. Zhidkosti i Gaza (Mechanism of Fluid and Gas), (3), 73–79.Google Scholar
  48. 48.
    Sou, S. (1971). Hydrodynamics of multiphase systems (Russian Transl.). (Mir, Moscow).Google Scholar
  49. 49.
    Nigmatulin, R. I. (1978). Fundamentals of mechanics of heterogeneous media. Moscow: Nauka.Google Scholar
  50. 50.
    Belotserkovsky, O. M., & Davydov, Y. M. (1982). The method of large particles in gas dynamics. Moscow: Nauka.Google Scholar
  51. 51.
    Rivkin, V. Y., & Ryskin, G. M. (1976). Flow structure for the motion of a spherical droplet in a liquid medium in the region of transient Reynolds numbers. Izvestiya AN SSSR. Mekh. Zhidkosti i Gaza (Mechanics of Fluid and Gas), (1), 9–15.Google Scholar
  52. 52.
    Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 8(2), 89.Google Scholar
  53. 53.
    Abramovich, G. N. (1960). The theory of turbulent jets. Moscow: Fizmatgiz.Google Scholar
  54. 54.
    Abramovich, G. N., et al. (1975). Turbulent currents under the influence of bulk forces and non-self-similarity. Moscow: Mashinostroyeniye.Google Scholar
  55. 55.
    Abramovich, G. N. (1970). On the influence of an admixture of solid particles or droplets on the structure of a turbulent gas jet. DAN SSSR (Reports of AS USSR), 190(5), 1052–1055.Google Scholar
  56. 56.
    Abramovich, G. N., et al. (1972). Turbulent jet with heavy impurities. Izvestiya AN SSSR. Mekh. Zhidkosti i Gaza (Mechanism of Fluid and Gas), (5), 41–49.Google Scholar
  57. 57.
    Abramovich, G. N., & Girshovich, T. A. (1972). The initial part of a turbulent jet containing heavy impurities in a spiral stream. In Investigations of two-phase, magneto-hydrodynamic and swirling turbulent jets (Proceedings of the MAI, Moscow), No. 40, pp. 5–24.Google Scholar
  58. 58.
    Abramovich, G. N., & Girshovich, T. A. (1973). On the diffusion of heavy particles in turbulent flows. DAN SSSR (Reports of AS USSR), 212(3), 573–576.Google Scholar
  59. 59.
    Aniskin, S. V. (1978). Similarity of the density of irrigation fluid sprayed by a mechanical injector SGP. In Protection of the environment from pollution by industrial emissions in pulp and paper industry (LTA, LTITSBP, Leningrad), No. 6, pp. 165–168.Google Scholar
  60. 60.
    Mikhailov, E. A., et al. (1981). Development of a methodology for calculating the geometric dimensions of nozzles with a given character of the distribution of specific fluid flows (Ruk. dep. ONITEKHIM, 20.04.1981, Yaroslavl), p. 6.Google Scholar
  61. 61.
    Mikhailov, E. A. (1982). Research and development of a methodology for calculating apparatuses of chemical industries with a given character of the distribution of the density of irrigation. Dissertation, Moscow Institute of Fine Chemical Technologies named after M.V. Lomonosov.Google Scholar
  62. 62.
    Abramovich, G. N. (1944). Theory of the centrifugal nozzle. In Promyshennaya aerodinamika (BIT TsAGI, Moscow).Google Scholar
  63. 63.
    Klyachko, L. S. (1952). The method of theoretical determination of the capacity of apparatus with a rotating axisymmetric flow of fluid. In Theory and practice of dust-free ventilation (Vol. 5, p. 162). Moscow: Profizdat.Google Scholar
  64. 64.
    Taylor, G. (1948). The mechanism of swirl atomizers. In Proceedings of the 7th international congress for applied mechanics (Vol. 2, pp. 280–285). London: The Congress.Google Scholar
  65. 65.
    Bammert, K. (1950). Die Kern. Abmessungen in Kreisen den Stromungen, Zeitschrift VDI, Bd. 92, No. 28, s. 32–39.Google Scholar
  66. 66.
    Rakhmatulin, H. A. (1956). Fundamentals of gas dynamics of interpenetrating motions of compressible media. Jour. Prikladnaya Matematika i Mekhanika (Applied Mathematics and Mechanics), 20(2), 184–185.MathSciNetGoogle Scholar
  67. 67.
    Krayko, A. N., et al. (1972). Mechanics of multiphase media. In Itogi nauki i tekhniki, VINITI, Gidromekhanika (The Results of Science and Technology, AISATI, Hydromechanics, Moscow), 6, 74.Google Scholar
  68. 68.
    Sternin, L. E., et al. (1980). Two-phase mono- and polydisperse flows of gas with particles. Moscow: Mashinostroyeniye.Google Scholar
  69. 69.
    Harlow, F. H. (1964). The particle-in-cell computing method for fluid dynamics. In Methods in computational physics, vol. 3, Fundamental methods in hydrodynamics. New York/London: Academic Press.Google Scholar
  70. 70.
    Amsden, A. A. (1966). The particle-in-cell method for the calculation of the dynamics of compressible fluids. Report LA-3466 (Los Alamos Science Lab, New Mexico).Google Scholar
  71. 71.
    Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229–253.MathSciNetCrossRefGoogle Scholar
  72. 72.
    Laats, M. K., & Frishman, F. A. (1970). On the assumptions used in the calculation of a two-phase jet. Izvestiya AN SSSR. Mekh. Zhidkosti i Gaza (Mechanism of Fluid and Gas), (2), 125–129.Google Scholar
  73. 73.
    Laats, M. K., & Frishman, F. A. (1973). Development of methods and investigation of intensity on the axis of a two-phase turbulent jet. Izvestiya AN SSSR. Mekh. Zhidkosti i Gaza (Mechanism of Fluid and Gas), (2), 153–157.Google Scholar
  74. 74.
    Abramovich, G. N. (1976). Applied gas dynamics. Moscow: Nauka.Google Scholar
  75. 75.
    Loitsyansky, G. G. (1978). Mechanics of fluid and gas. Moscow: Nauka.Google Scholar
  76. 76.
    Landau, L. D., & Lifshitz, E. M. (1953). Continuum mechanics. Moscow: Gostekhizdat.Google Scholar
  77. 77.
    Vlasov, V. V. (1975). Investigation of the rectifying ability of the injector with dispersion of the liquid. Dissertation, Moscow Institute of Fine Chemical Technologies named after M.V. Lomonosov.Google Scholar
  78. 78.
    Girba, E. A. (1978). Investigation of the process of dust collection in liquid-gas injectors with dispersion of working fluid. Dissertation, GIAP, Moscow.Google Scholar
  79. 79.
    Katalov, V. I. (1977). Investigation of the absorption process in a liquid-gas injector with liquid dispersion. Dissertation, MINH and GP im. I.M. Gubkin.Google Scholar
  80. 80.
    Basargin, B. N., & Katalov, V. I. (1975). Cell model of hydrodynamics of a free zone of a torch of injection devices. In Macsoobmennye i teploobmennyye protsessy khim. tekhnol (Mass exchange and heat exchange processes of chemical technology) (YaPI, Yaroslavl), pp. 65–74.Google Scholar
  81. 81.
    Leonchik, B. I., & Mayakin, V. P. (1981). Measurements in disperse flows. Moscow: Energoizdat.Google Scholar
  82. 82.
    Protodyakonov, I. O., & Glinsky, V. A. (1982). Experimental studies of hydrodynamics of two-phase systems in engineering chemistry. Leningrad: Leningrad State University.Google Scholar
  83. 83.
    Ametistov, E. V., et al. (1982). Heat and mass transfer. In V. A. Grigoriev & V. M. Zorin (Eds.), Thermo technical experiment: Handbook. Moscow: Energoizdat.Google Scholar
  84. 84.
    Fuks, N. A. (1975). Modern methods of aerosol research. Zh. Vsesoyuzn. khim. obshchestva im. D.I. Mendeleyeva (Journal of Chemistry Society named afrter D.I. Mendeleyev), 20(1), 71–76.Google Scholar
  85. 85.
    Basargin, B. N., et al. (1976). The velocity of droplets in a spray of a mechanical injector. In Mass and heat exchange processes of chem. technol. Interuniversity scientific research collection (YaPI, Yaroslavl), pp. 174–177.Google Scholar
  86. 86.
    Miller, M. (1979). Holography. (Transl. with czech). Leningrad: Mashinostroyeniye.Google Scholar
  87. 87.
    Rinkevichus, B. S. (1978). Laser anemometry. Moscow: Energia.Google Scholar
  88. 88.
    Malofeev, N. L., et al. (1981). The velocities of the motion of liquid droplets in a gas flow. Zh. Prikl. Khim. (Journal of Applied Chemistry), 54(2), 442–445.Google Scholar
  89. 89.
    Chigier, N. (1983). Drop size and velocity instrumentation. Progress in Energy and Combustion Science, 9(112), 155–177.CrossRefGoogle Scholar
  90. 90.
    Zakharchenko, V. М. (1975). Measurement of the flow velocity by a laser one-beam time-of-flight method. Uchenyye zapiski TsAGI (Scientific Notes of CAHI), 6(2), 147–157.Google Scholar
  91. 91.
    Zhigulev, S. V. (1982). On one version of the laser single-beam time-of-flight method for measuring the flow velocity. Uchenyye zapiski TsAGI (Scientific Notes of CAHI), 13(5), 142–147.MathSciNetGoogle Scholar
  92. 92.
    Shifrin, K. S., & Golikov, V. I. (1961). Determination of the droplet spectrum by the method of small angles. In Investigation of clouds, precipitation and thunderstorm electricity. Proceedings of the sixth interdepartmental conf. (Izd. AN SSSR, Moscow), pp. 266–277.Google Scholar
  93. 93.
    Shifrin, K. S., & Kolmakov, I. B. (1967). Calculation of the particle size spectrum from the current and the integrand values of the indicatrix in the region of small angles. Izvestiya AN SSSR. Fizika Atmosfery i Okeana (Physics of the Atmosphere and the Ocean), 3(12), 1271–1279.Google Scholar
  94. 94.
    Bayvel, L. P., & Lagunov, A. S. (1977). Measurement and control of the dispersion of particles by the light scattering method. Moscow: Energia.Google Scholar
  95. 95.
    Dieck, R. H., & Roberts, R. L. (1970). The determination of the sauter mean droplet diameter in fuel nozzle sprays. Applied Optics, 9, 2007–2014.CrossRefGoogle Scholar
  96. 96.
    Zimin, E. P., & Krugersky, A. M. (1977). Integral characteristics of light scattering by polydisperse particles. Optika i Spektroskopiya (Optics and Spectroscopy), 43(6), 1144–1149.Google Scholar
  97. 97.
    Battle, S. M., & Miller, T. J. (1981). Visualization of the transition region for flow around the wing profile with the help of smoke from a heated wire. Missile Technology and Astronautics, 19(4), 81–88.Google Scholar
  98. 98.
    Povkh, I. L. (1969). Technical hydromechanics. Leningrad: Mashinostroyeniye.Google Scholar
  99. 99.
    Rusanov, A. A., et al. (1969). Ochistka dymovykh gazov v promyshlennoy energetike (Cleaning of flue gases in industrial power engineering). Moscow: Energia.Google Scholar
  100. 100.
    Kremlevsky, P. P. (1980). Measurement of flow and quantity of liquid, gas and steam. Moscow: Izd-vo Standartov.Google Scholar
  101. 101.
    Leidenforst, W., & Ku, J. (1960). New high-sensitivity micromanometer. Instruments for scientific research (Russian Transl.). No. 10, pp. 76–78.Google Scholar
  102. 102.
    Ranz, W. E., & Marshall, W. R. (1952). Evaporation from drops (pt. 2). Chemical Engineering Progress, 48(5), 173–180.Google Scholar
  103. 103.
    Tikhonov, A. N., & Samarskii, A. A. (1977). Equations of mathematical physics. Moscow: Nauka.zbMATHGoogle Scholar
  104. 104.
    Zueva, G. A. (2002). Simulation of combined processes of heat treatment of heterogeneous systems intensified by combined energy supply. Dissertation, IGXTU, Ivanovo.Google Scholar
  105. 105.
    Cranc, J. (1975). The mathematics of diffusion (2nd ed.). Oxford: Clarendon Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nikolay N. Simakov
    • 1
  1. 1.Yaroslavl State Technical UniversityYaroslavlRussia

Personalised recommendations