How to Achieve Traffic Safety with LTE and Edge Computing

  • Niklas Hehenkamp
  • Christian FacchiEmail author
  • Stefan Neumeier
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 69)


Multi-Access Edge Computing (MEC) is an emerging technology that is promising for applications demanding a low latency and high bandwidth using cellular communication techniques. Vehicular communication is regarded as key technology on the way to fully autonomous vehicles. The requirements for safety critical applications in vehicles are harsh concerning timing and reliability. This paper analyzes the properties of MEC with regard to the requirements of vehicle safety applications. The paper elaborates the problems faced by vehicle-to-everything communication and possible approaches to solve them with MEC.


Multi-Access Edge Computing MEC V2X LTE Road safety 



The authors want to thank Biraj Parikh and Suprateek Banerjee for cross-reading and providing valuable feedback.


  1. 1.
    ETF Connectivity and A Driving: Automated Driving Roadmap, ERTRAC, resreport, July 2015.
  2. 2.
    ORADO Committee: Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems. SAE International Std., January 2014Google Scholar
  3. 3.
    Abboud, K., Omar, H.A., Zhuang, W.: Interworking of DSRC and cellular network technologies for V2X communications: a survey. 65(12), 9457–9470 (2016).
  4. 4.
    3GPP: Policy and charging control architecture, 3rd generation partnership project (3GPP). Technical Specification (TS) 23.203, version 15.1.0, 12 2017.
  5. 5.
    Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella, D.: On multi-access edge computing: a survey of the emerging 5G network edge architecture and orchestration. 1 (2017).
  6. 6.
    Ahmed, A., Ahmed, E.: A survey on mobile edge computing. In: 2016 10th International Conference on Intelligent Systems and Control (ISCO), pp. 1–8. IEEE (2016).
  7. 7.
    Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: the communication perspective. 1 (2017).
  8. 8.
    Malandrino, F., Kirkpatrick, S., Chiasserini, C.-F.: How close to the edge?: delay/utilization trends in MEC. In: Proceedings of the 2016 ACM Workshop on Cloud-Assisted Networking, ser. CAN 2016, pp. 37–42. ACM (2016).
  9. 9.
    Tanenbaum, A.S., Van Steen, M.: Distributed Systems: Principles and Paradigms. Prentice-Hall, Upper Saddle River (2007)zbMATHGoogle Scholar
  10. 10.
    Lee, K., Kim, J., Park, Y., Wang, H., Hong, D.: Latency of cellular-based V2X: perspectives on TTI-proportional latency and TTI-independent latency. 5, 15800–15809 (2017).
  11. 11.
    3GPP: Study on LTE-based V2X services, 3rd Generation Partnership Project (3GPP). Technical Report (TR) 36.885, version 14.0.0, 07 2016.
  12. 12.
    Jeong, S., Baek, Y., Son, S.H.: A hybrid V2X system for safety-critical applications in VANET. In: 2016 IEEE 4th International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA), pp. 13–18 (2016)Google Scholar
  13. 13.
    Chen, S., Hu, J., Shi, Y., Zhao, L.: LTE-V: a TD-LTE-based V2X solution for future vehicular network. 3(6), 997–1005 (2016)Google Scholar
  14. 14.
    Ahmed, K.J., Lee, M.J.: Secure, LTE-based V2X service (2017)Google Scholar
  15. 15.
    Husain, S., Kunz, A., Prasad, A., Samdanis, K., Song, J.: An overview of standardization efforts for enabling vehicular-to-everything services. In: 2017 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 109–114. IEEE (2017)Google Scholar
  16. 16.
    Hagenauer, F., Sommer, C., Higuchi, T., Altintas, O., Dressler, F.: Parked cars as virtual network infrastructure: enabling stable V2I access for long-lasting data flows, pp. 57–64. ACM Press (2017).
  17. 17.
    Xiao, Y., Zhu, C.: Vehicular fog computing: vision and challenges. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 6–9. IEEE (2017).
  18. 18.
    Li, L., Li, Y., Hou, R.: A novel mobile edge computing-based architecture for future cellular vehicular networks. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE (2017).
  19. 19.
    Sasaki, K., Suzuki, N., Makido, S., Nakao, A.: Vehicle control system coordinated between cloud and mobile edge computing. In: 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 1122–1127. IEEE (2016).
  20. 20.
    Buchenscheit, A., Schaub, F., Kargl, F., Weber, M.: A VANET-based emergency vehicle warning system. In: 2009 IEEE Vehicular Networking Conference (VNC), pp. 1–8. IEEE (2009).
  21. 21.
    Fujioka, M., Takahashi, M., Matsumura, T., Wang, C., Hirakoba, H.: Field trial of cellular warning for automobiles using geomessaging in Japan. In: 2012 12th International Conference on ITS Telecommunications, pp. 497–501 (2012)Google Scholar
  22. 22.
    Nunna, S., Kousaridas, A., Ibrahim, M., Dillinger, M., Thuemmler, C., Feussner, H., Schneider, A.: Enabling real-time context-aware collaboration through 5G and mobile edge computing, pp. 601–605. IEEE (2015).
  23. 23.
    Rahman, M.A., Hassanain, E., Hossain, M.S.: Towards a secure mobile edge computing framework for Hajj (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Niklas Hehenkamp
    • 1
  • Christian Facchi
    • 1
    Email author
  • Stefan Neumeier
    • 1
  1. 1.Technische Hochschule IngolstadtIngolstadtGermany

Personalised recommendations