Existence of an Optimal Perpetual Gossiping Scheme for Arbitrary Networks
Abstract
Gossiping is a problem in which a peer-to-peer network must disperse the information held by each machine to all other machines in the minimum number of communication steps. In perpetual gossiping, new information may be introduced to any machine at any time, and the objective is to find a perpetual communication scheme which guarantees that new information will be completely dispersed in optimal time. The basic gossiping problem has a well-known solution, but the perpetual gossiping extension has defied a general solution. Additionally, prior to this paper, it has not been shown that there is even a means to arrive at an optimal solution on a case-by-case basis. Attempts at optimization have thus far taken place in a series of progressive refinements, broadening the scope of network topologies for which optimal or near-optimal solutions are known. This paper proceeds from the opposite direction, by demonstrating an algorithm which is guaranteed to find an optimal perpetual gossiping scheme for an arbitrary graph. The network model is then generalized so as to apply to a broader class of communication schemes.
Keywords
Perpetual gossip Peer-to-peer networks Optimization Network topologyReferences
- 1.Baker, B., Shostak, R.: Gossips and telephones. Discret. Math. 2(3), 191–193 (1972). https://doi.org/10.1016/0012-365X(72)90001-5MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Bumby, R.T.: A problem with telephones. SIAM J. Algebraic Discret. Methods 2(1), 13–18 (1981)MathSciNetCrossRefGoogle Scholar
- 3.Chang, G.J., Tsay, Y.J.: The partial gossiping problem. Discret. Math. 148(1), 9–14 (1996). https://doi.org/10.1016/0012-365X(94)00257-JMathSciNetCrossRefzbMATHGoogle Scholar
- 4.van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber, F.: Epistemic protocols for dynamic gossip. J. Appl. Logic 20, 1–31 (2017). https://doi.org/10.1016/j.jal.2016.12.001MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Fertin, G.: A study of minimum gossip graphs. Discret. Math. 215(1–3), 33–57 (2000)MathSciNetCrossRefGoogle Scholar
- 6.Fertin, G., Labahn, R., et al.: Compounding of gossip graphs. Networks 36(2), 126–137 (2000)MathSciNetCrossRefGoogle Scholar
- 7.Hajnal, A., Milner, E.C., Szemerédi, E.: A cure for the telephone disease. Canad. Math. Bull 15(3), 447–450 (1972)MathSciNetCrossRefGoogle Scholar
- 8.Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and broadcasting in communication networks. Networks 18(4), 319–349 (1988)MathSciNetCrossRefGoogle Scholar
- 9.Khuller, S., Kim, Y.A., Wan, Y.C.J.: On generalized gossiping and broadcasting. J. Algorithms 59(2), 81–106 (2006). https://doi.org/10.1016/j.jalgor.2005.01.002MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Knoedel, W.: New gossips and telephones. Discret. Math. 13(1), 95 (1975). https://doi.org/10.1016/0012-365X(75)90090-4MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Krumme, D.W.: Reordered gossip schemes. Discret. Math. 156(1), 113–140 (1996). https://doi.org/10.1016/0012-365X(94)00302-YMathSciNetCrossRefzbMATHGoogle Scholar
- 12.Labahn, R., Hedetniemi, S.T., Laskar, R.: Periodic gossiping on trees. Discret. Appl. Math. 53(1), 235–245 (1994). https://doi.org/10.1016/0166-218X(94)90187-2MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Liestman, A.L., Richards, D.: Perpetual gossiping. Parallel Process. Lett. 3(04), 347–355 (1993)MathSciNetCrossRefGoogle Scholar
- 14.Scott, A.D.: Better bounds for perpetual gossiping. Discret. Appl. Math. 75(2), 189–197 (1997)MathSciNetCrossRefGoogle Scholar
- 15.Tijdeman, R.: On a telephone problem. Nieuw Archief voor Wiskunde 3(19), 188–192 (1971)MathSciNetzbMATHGoogle Scholar
- 16.Tsay, Y.J., Chang, G.J.: The exact gossiping problem. Discret. Math. 163(1), 165–172 (1997). https://doi.org/10.1016/S0012-365X(96)00317-2MathSciNetCrossRefzbMATHGoogle Scholar