Advertisement

Visible Light Communication Security Vulnerabilities in Multiuser Network: Power Distribution and Signal to Noise Ratio Analysis

  • Rana ShaabanEmail author
  • Prakash Ranganathan
  • Saleh Faruque
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 69)

Abstract

In the near future, Visible Light Communication (VLC) is expected to be used in multiple environments which were due to radio frequency RF congestion and health limitations, RF should not be employed. VLC is a combination of optical wireless communications and illumination. Due to the misconception that VLC-based communications cannot be eavesdropped on by malicious attacker since light does not penetrate through solid objects like walls, VLC security and privacy are areas that have been hardly studied. In this work, we study various techniques for physical layer security performance of a VLC-based communication. Then we propose a new VLC framework to defend against eavesdropping attacks. Three-step process was followed to achieve this aim. First implementing more APs in multiuser VLC network, then reducing the semi-angle of LED and, finally using the protected zone around the AP where eavesdroppers are restricted. The performance is measured in terms of the received optical power and SNR. The results of the simulations indicate that VLC secrecy performance can be enhanced using the proposed model.

Keywords

VLC Security Safety Wireless communication 

References

  1. 1.
    Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004)CrossRefGoogle Scholar
  2. 2.
    Dimitrov, S., Haas, H.: Principles of LED light communications: towards networked Li-Fi. Cambridge University Press, Cambridge (2015)Google Scholar
  3. 3.
    Haas, H., Yin, L., Wang, Y., Chen, C.: What is LiFi? J. Light. Technol. 34(6), 1533–1544 (2016)CrossRefGoogle Scholar
  4. 4.
    Basnayaka, D.A., Haas, H.: Hybrid RF and VLC systems: improving user data rate performance of VLC systems. In: IEEE Vehicular Technology Conference, vol. 2015 (2015)Google Scholar
  5. 5.
    Shaaban, R., Faruque, S.: A survey of indoor visible light communication power distribution and color shift keying transmission. In: IEEE International Conference on Electro Information Technology, pp. 149–153 (2017)Google Scholar
  6. 6.
    IEEE Computer Society: IEEE Standard for Local and metropolitan area networks - Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Std 802.15.7-2011, vol. 1, no. September, pp. 1–286 (2011)Google Scholar
  7. 7.
    Mostafa, A., Lampe, L.: Enhancing the security of VLC links: physical-layer approaches. In: 2015 IEEE Summer Topicals Meeting Series, SUM 2015, pp. 39–40 (2015)Google Scholar
  8. 8.
    Mostafa, A., Lampe, L.: Physical-layer security for MISO visible light communication channels. IEEE J. Sel. Areas Commun. 33(9), 1806–1818 (2015)CrossRefGoogle Scholar
  9. 9.
    Ucar, S., Ergen, S.C., Ozkasap, O.: Multihop-cluster-based IEEE 802.11p and LTE hybrid architecture for VANET safety message dissemination. IEEE Trans. Veh. Technol. 65(4), 2621–2636 (2016)CrossRefGoogle Scholar
  10. 10.
    Ucar, S., Ergen, S.C., Ozkasap, O.: Security vulnerabilities of IEEE 802.11p and visible light communication based platoon. In: 2016 IEEE Vehicular Networking Conference, pp. 1–4 (2016)Google Scholar
  11. 11.
    Emara, K.: Safety-aware location privacy in VANET: evaluation and comparison. IEEE Trans. Veh. Technol. 66(12), 10718–10731 (2017)CrossRefGoogle Scholar
  12. 12.
    ETSI: ETSI EN 302 637-3 Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service, Etsi, vol. 1, pp. 1–73 (2014)Google Scholar
  13. 13.
    Koscher, K., et al.: Experimental security analysis of a modern automobile. In: Proceedings - IEEE Symposium on Security and Privacy, pp. 447–462 (2010)Google Scholar
  14. 14.
    Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Araki, T., Suzuki, T.: Fuzzy timing passwords for providing easy user authentication to disable persons and their application to visible light communication. In: World Automation Congress (WAC), pp. 1–5 (2012)Google Scholar
  17. 17.
    Zhang, B., Ren, K., Xing, G., Fu, X., Wang, C.: SBVLC: secure barcode-based visible light communication for smartphones. IEEE Trans. Mob. Comput. 15(2), 432–446 (2016)CrossRefGoogle Scholar
  18. 18.
    Mostafa, A., Lampe, L.: Securing visible light communications via friendly jamming. In: 2014 IEEE Globecom Workshops, GC Wkshps 2014, pp. 524–529 (2014)Google Scholar
  19. 19.
    Mostafa, A., Lampe, L.: Physical-layer security for indoor visible light communications. In: 2014 IEEE International Conference on Communications, ICC 2014, pp. 3342–3347 (2014)Google Scholar
  20. 20.
    Haenggi, M.: The secrecy graph and some of its properties. In: IEEE International Symposium on Information Theory - Proceedings, pp. 539–543 (2008)Google Scholar
  21. 21.
    Pinto, P.C., Barros, J., Win, M.Z.: Secure communication in stochastic wireless networks—part i: connectivity. IEEE Trans. Inf. Forensics Secur. 7(1), 125–138 (2012)CrossRefGoogle Scholar
  22. 22.
    Pinto, P.C., Barros, J., Win, M.Z.: Secure communication in stochastic wireless networks - Part II: maximum rate and collusion. IEEE Trans. Inf. Forensics Secur. 7(1 Part 2), 139–147 (2012)CrossRefGoogle Scholar
  23. 23.
    Koyluoglu, O.O., Koksal, C.E., El Gamal, H.: On secrecy capacity scaling in wireless networks. IEEE Trans. Inf. Theory 58(5), 3000–3015 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhou, X., Ganti, R.K., Andrews, J.G., Hjørungnes, A.: On the throughput cost of physical layer security in decentralized wireless networks. IEEE Trans. Wirel. Commun. 10(8), 2764–2775 (2011)CrossRefGoogle Scholar
  25. 25.
    Wang, H., Zhou, X., Reed, M.C.: Physical layer security in cellular networks: a stochastic geometry approach. IEEE Trans. Wirel. Commun. 12(6), 2776–2787 (2013)CrossRefGoogle Scholar
  26. 26.
    Ma, H., Lampe, L., Hranilovic, S.: Coordinated broadcasting for multiuser indoor visible light communication systems. IEEE Trans. Commun. 63(9), 3313–3324 (2015)CrossRefGoogle Scholar
  27. 27.
    Lapidoth, A., Moser, S.M., Wigger, M.A.: On the capacity of free-space optical intensity channels. IEEE Trans. Inf. Theory 55(10), 4449–4461 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, J.B., Hu, Q.S., Wang, J., Chen, M., Wang, J.Y.: Tight bounds on channel capacity for dimmable visible light communications. Light. Technol. J. 31(23), 3771–3779 (2013)CrossRefGoogle Scholar
  29. 29.
    Chaaban, A., Morvan, J.M., Alouini, M.S.: Free-space optical communications: capacity bounds, approximations, and a new sphere-packing perspective. IEEE Trans. Commun. 64(3), 1176–1191 (2016)CrossRefGoogle Scholar
  30. 30.
    Dimitrov, S., Haas, H.: Information rate of OFDM-based optical wireless communication systems with nonlinear distortion. J. Light. Technol. 31(6), 918–929 (2013)CrossRefGoogle Scholar
  31. 31.
    Mostafa, A., Lampe, L.: Optimal and robust beamforming for secure transmission in MISO visible-light communication links. IEEE Trans. Sig. Process. 64(24), 6501–6516 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Pan, G., Ye, J., Ding, Z.: On secure VLC systems with spatially random terminals. IEEE Commun. Lett. 21(3), 492–495 (2017)CrossRefGoogle Scholar
  33. 33.
    Classen, J., Chen, J., Steinmetzer, D., Hollick, M., Knightly, E.: The spy next door: eavesdropping on high throughput visible light communications. In: 2nd International Workshop on Visible Light Communications Systems, VLCS 2015, pp. 9–14 (2015)Google Scholar
  34. 34.
    Yin, L., Haas, H.: Physical-layer security in multiuser visible light communication networks. IEEE J. Sel. Areas Commun. 36(1), 162–174 (2018)CrossRefGoogle Scholar
  35. 35.
    Liu, X., Wei, X., Guo, L., Liu, Y., Zhou, Y.: A new eavesdropping-resilient framework for indoor visible light communication. In: Proceedings of 2016 IEEE Global Communications Conference, GLOBECOM 2016 (2016)Google Scholar
  36. 36.
    Emara, K., Woerndl, W., Schlichter, J.: Vehicle tracking using vehicular network beacons. In: 2013 IEEE 14th International Symposium “A World Wireless, Mobile Multimedia Networks”, pp. 1–6 (2013)Google Scholar
  37. 37.
    Wiedersheim, B., Ma, Z., Kargl, F., Papadimitratos, P.: Privacy in inter-vehicular networks: why simple pseudonym change is not enough. In: 7th International Conference on Wireless On-Demand Network Systems and Services, WONS 2010, pp. 176–183 (2010)Google Scholar
  38. 38.
    Sampigethaya, K., Li, M., Huang, L., Poovendran, R.: AMOEBA: robust location privacy scheme for VANET. IEEE J. Sel. Areas Commun. 25(8), 1569–1589 (2007)CrossRefGoogle Scholar
  39. 39.
    Freudiger, J., Raya, M., Félegyházi, M., Papadimitratos, P., Hubaux, J.-P.: Mix-zones for location privacy in vehicular networks. In: ACM Workshop Wireless Networking Intelligent Transportation Systems, vol. 51, pp. 1–7 (2007)Google Scholar
  40. 40.
    Buttyán, L., Holczer, T., Weimerskirch, A., Whyte, W.: SLOW: a practical pseudonym changing scheme for location privacy in VANETs. In: 2009 IEEE Vehicular Networking Conference, VNC 2009 (2009)Google Scholar
  41. 41.
    Palanisamy, B., Liu, L.: Attack-resilient mix-zones over road networks: architecture and algorithms. IEEE Trans. Mob. Comput. 14(3), 495–508 (2015)CrossRefGoogle Scholar
  42. 42.
    Yu, R., Kang, J., Huang, X., Xie, S., Zhang, Y., Gjessing, S.: MixGroup: accumulative pseudonym exchanging for location privacy enhancement in vehicular social networks. IEEE Trans. Dependable Secur. Comput. 13(1), 93–105 (2016)CrossRefGoogle Scholar
  43. 43.
    Papadimitratos, P., Calandriello, G., Hubaux, J.-P., Lioy, A.: Impact of vehicular communications security on transportation safety. In: IEEE Conference Computer Communications Workshops, IEEE INFOCOM 2008, vol. 00, no. c, pp. 1–6 (2008)Google Scholar
  44. 44.
    Lefèvre, S., Petit, J., Bajcsy, R., Laugier, C., Kargl, F.: Impact of V2X privacy strategies on intersection collision avoidance systems. In: IEEE Vehicular Networking Conference, VNC 2013, pp. 71–78 (2013)Google Scholar
  45. 45.
    Lu, H., Su, Z., Yuan, B.: SNR and optical power distribution in an indoor visible light communication system, pp. 1063–1067 (2014)Google Scholar
  46. 46.
    Romero-Zurita, N., McLernon, D., Ghogho, M., Swami, A.: PHY layer security based on protected zone and artificial noise. IEEE Sig. Process. Lett. 20(5), 487–490 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rana Shaaban
    • 1
    Email author
  • Prakash Ranganathan
    • 1
  • Saleh Faruque
    • 1
  1. 1.University of North DakotaGrand ForksUSA

Personalised recommendations