Advertisement

Bioinformatics Tools for PacBio Sequenced Amplicon Data Pre-processing and Target Sequence Extraction

  • Zeeshan AhmedEmail author
  • Justin Pranulis
  • Saman Zeeshan
  • Chew Yee Ngan
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 70)

Abstract

Modern high throughput sequencing technologies are enormously contributing to the generation of heterogeneous genomic data of different sizes and kinds. In most of the cases, NGS data is first produced in the raw form, which is then demultiplexed into text based formats, representing nucleotide sequences i.e. FASTA and FASTQ formats for secondary analysis. One of the major challenges for the downstream analysis of amplicon data is to first demultiplex FASTQ files based on the different oligonucleotides barcode combinations. Match & Scratch Barcodes (MSB) are a set of interactive bioinformatics tools that support the analysis of PacBio sequenced long read amplicon data by detecting multiple forward and reverse end adapter sequences, generic adapters attached to the region specific oligoes, multiple number of region specific oligos of variable length for the extraction of sequences of interest. These work with zero mismatch, retain only reads which map exactly to adapters and barcodes, report all sequences matched to both single and paired-end adapters and barcodes, and demultiplex FASTQ files based on the common and distinct barcodes combinations. The performance of MSB has been successfully tested using in-house sequenced non-published and external published datasets, which includes PacBio sequenced long read PDX (Patient-Derived Xenograft) amplicon data embedding multiple barcodes of variable lengths. MSB is user friendly and first interactively designed set of tools to empower non-computational scientists to demultiplex their own datasets and export results in different data formats (CSV, FASTA and FASTQ).

Keywords

Bioinformatics PacBio Amplicon data Target sequences Software 

Notes

Acknowledgements

We thank Ahmed lab, Department of Genetics and Genome Sciences, Institute for Systems Genomics (ISG), School of Medicine, University of Connecticut Health Center (UConn Health), and The Jackson Laboratory for Genomics Medicine for their support to ZA, SZ and CYN. We also thank Partnership for Innovation and Education (PIE) and Technology Incubation Program (TIP) for supporting JP at UConn Health. We appreciate all colleagues, who have provided insight and expertise that greatly assisted the research and development.

References

  1. 1.
    Escalona, M., Rocha, S., Posada, D.: A comparison of tools for the simulation of genomic next-generation sequencing data. Nat. Rev. Genet. 17, 459–469 (2016)CrossRefGoogle Scholar
  2. 2.
    Head, S.R., Komori, H.K., LaMere, S.A., Whisenant, T., Van Nieuwerburgh, F., Salomon, D.R., Ordoukhanian, P.: Library construction for next-generation sequencing: overviews and challenges. Biotechniques 56, 2 (2014)CrossRefGoogle Scholar
  3. 3.
    Boeva, V., Popova, T., Lienard, M., Toffoli, S., Kamal, M., Le Tourneau, C., Gentien, D., Servant, N., Gestraud, P., Rio Frio, T., Hupé, P., Barillot, E., Laes, J.F.: Multi-factor data normalization enables the detection of copy number aberrations in amplicon sequencing data. Bioinformatics 15, 3443–3450 (2014)CrossRefGoogle Scholar
  4. 4.
    Del Fabbro, C., Scalabrin, S., Morgante, M., Giorgi, F.M.: An extensive evaluation of read trimming effects on Illumina NGS data analysis. Plos One 8, e85024 (2013)CrossRefGoogle Scholar
  5. 5.
    Breese, M.R., Liu, Y.: NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics 29, 494–496 (2013)CrossRefGoogle Scholar
  6. 6.
    Bolger, A.M., Lohse, M., Usadel, B.: Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 30, 15 (2014)CrossRefGoogle Scholar
  7. 7.
    Sturm, M., Schroeder, C., Bauer, P.: SeqPurge: highly-sensitive adapter trimming for paired-end NGS data. BMC Bioinf. 17, 208 (2016)CrossRefGoogle Scholar
  8. 8.
    Didion, J.P., Martin, M., Collins F.S.: Atropos: specific, sensitive, and speedy trimming of sequencing reads. PeerJ 5, e2452v3 (2017) (Preprints)Google Scholar
  9. 9.
    Dodt, M., Roehr, J.T., Ahmed, R., Dieterich, C.: FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1, 895–905 (2012)CrossRefGoogle Scholar
  10. 10.
    Döring, A., Rocha, S., Posada, D.: SeqAn an efficient, generic C++ library for sequence analysis. BMC Bioinf. 9, 11 (2008)CrossRefGoogle Scholar
  11. 11.
    Hastreiter, M., Jeske, T., Hoser, J., Kluge, M., Ahomaa, K., Friedl, M.S., Kopetzky, S.J., Quell, J.D., Werner Mewes, H., Küffner, R.: KNIME4NGS: a comprehensive toolbox for next generation sequencing analysis. Bioinformatics 33, 1565–1567 (2017)Google Scholar
  12. 12.
    Ahmed, Z., Ngan, C.Y.: Match & Scratch Barcodes: tools for the demultiplexing and extraction of target sequences from PacBio amplicon data. Nat. Methods (2017)Google Scholar
  13. 13.
    Ahmed, Z., Zeeshan, S., Dandekar, T.: Developing sustainable software solutions for bioinformatics by the “Butterfly” paradigm. F1000Research 3, 71 (2014)CrossRefGoogle Scholar
  14. 14.
    Ahmed, Z., Zeeshan, S.: Cultivating software solutions development in the scientific academia. Recent Pat. Comput. Sci. 7, 54–66 (2011)CrossRefGoogle Scholar
  15. 15.
    Ahmed, Z.: Designing flexible gui to increase the acceptance rate of product data management systems in industry. Int. J. Comput. Sci. Emerg. Technol. 2, 100–109 (2011)Google Scholar
  16. 16.
    Armanhi, J.S.L., de Souza, R.S.C., de Araújo, L.M., Okura, V.K., Mieczkowski, P., Imperial, J., Arruda, P.: Multiplex amplicon sequencing for microbe identification in community-based culture collections. Sci. Rep. 6, 29543 (2016)CrossRefGoogle Scholar
  17. 17.
    Armanhi, J.S.L., de Souza, R.S.C., Damasceno, N.D.B., de Araújo, L.M., Imperial, J., Arruda, P.A.: Community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome. Front. Plant Sci. 8, 2191 (2017)Google Scholar
  18. 18.
    Wolin, M.J., Miller, T.L., Stewart, C.S.: Microbe-microbe interactions. In: Hobson, P.N., Stewart, C.S. (eds.) The Rumen Microbial Ecosystem. Springer, Dordrecht (1997)Google Scholar
  19. 19.
    Sanders, E.R.: Aseptic laboratory techniques: plating methods. J. Visual. Exp: JoVE 63, 3064 (2012)Google Scholar
  20. 20.
    McNear Jr., D.H.: The rhizosphere—roots, soil and everything in between. Nat. Educ. Knowl. 4(3), 1 (2013)Google Scholar
  21. 21.
    Bartlett, J.M., Stirling, D.: A short history of the polymerase chain reaction. Methods Mol. Biol. 226, 3–6 (2003)Google Scholar
  22. 22.
    Janda, J.M., Abbott, S.L.: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45(9), 2761–2764 (2007)CrossRefGoogle Scholar
  23. 23.
    Kia, A., Gloeckner, C., Osothprarop, T., Gormley, N., Bomati, E., Stephenson, M., Goryshin, I., He, M.M.: Improved genome sequencing using an engineered transposase. BMC Biotechnol. 17, 6 (2017)CrossRefGoogle Scholar
  24. 24.
    Grohme, M.A., Soler, R.F., Wink, M., Frohme, M.: Microsatellite marker discovery using single molecule real-time circular consensus sequencing on the Pacific Biosciences RS. Biotechniques 55, 253–256 (2013)CrossRefGoogle Scholar
  25. 25.
    Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R.: UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200 (2011)CrossRefGoogle Scholar
  26. 26.
    Edgar, R.C.: Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010)CrossRefGoogle Scholar
  27. 27.
    DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G.L.: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72(7), 5069–5072 (2006)CrossRefGoogle Scholar
  28. 28.
    Sokal, R.R., Sneath, P.H.A.: Principles of numerical taxonomy. W.H. Freeman, San Francisco (1963)zbMATHGoogle Scholar
  29. 29.
    Edgar, R.C.: UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Zeeshan Ahmed
    • 1
    • 2
    Email author
  • Justin Pranulis
    • 1
  • Saman Zeeshan
    • 3
  • Chew Yee Ngan
    • 3
  1. 1.Genetics and Genome Science, School of MedicineUniversity of Connecticut Health Center (UConn Health)FarmingtonUSA
  2. 2.Institute for Systems Genomics, School of MedicineUniversity of Connecticut Health Center (UConn Health)FarmingtonUSA
  3. 3.The Jackson Laboratory for Genomic MedicineFarmingtonUSA

Personalised recommendations