Advertisement

Sample Preparation Focusing on Plant Omics

  • Rodrigo Moretto Galazzi
  • Jemmyson Romário de Jesus
  • Marco Aurélio Zezzi ArrudaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1073)

Abstract

Because of strong impact of omics in many fields, and the complexity of the samples when focusing on areas such as genomics, (metallo)proteomics, metabolomics, among others, it is easy to rationalize the great importance that sample preparation has for achieving reliable results, mainly considering plant science. Then, this chapter points out applications of the sample preparation focusing on such areas, and a diversity of strategies, techniques, and procedures is highlighted and commented.

Keywords

Proteomics Metallomics Ionomics Metabolomics Extraction Decomposition 

Abbreviations

AAM

Ammonium acetate/methanol

ADP

Adenosine diphosphate

ATP

Adenosine triphosphate

BIF

Banded iron formation

CE-ICP-MS

Capillary electrophoresis-inductively coupled plasma-mass spectrometry

DNA

Deoxyribonucleic acid

ESI-MS

Electrospray ionization mass spectrometry

ESI-FAIMS-IT-MS

Electrospray ionization-high-field asymmetric waveform ion mobility spectrometry-ion trap mass spectrometry

FRET

Fluorescence resonance energy transfer

FT-ICR MS

Fourier transform ion cyclotron resonance mass spectrometry

HPLC-DAD

High-performance liquid chromatography with diode array detector

HPLC-DAD-ESI-MS/MS

High-performance liquid chromatography with diode array detector coupled to electrospray ionization tandem mass spectrometry

HPLC-UV

High-performance liquid chromatography with ultraviolet detector

HRE

Heat reflux extraction

ICAT

Isotope-coded affinity

ICP-MS

Inductively coupled plasma mass spectrometry

IEF

Isoelectric focusing

iTRAQ

Isobaric tags for relative and absolute quantification

JA

Jasmonic acid

LC

Liquid chromatography

LC-ESI-MS/MS

Liquid chromatography coupled to electrospray ionization tandem mass spectrometry

LC-ICP-MS

Liquid chromatography-inductively coupled plasma mass spectrometry

LC-MS/MS

Liquid chromatography tandem-mass spectrometry

LC-MS

Liquid chromatography mass spectrometry

MAE

Microwave-assisted extraction

MALDI-MS

Matrix-assisted laser desorption/ionization coupled mass spectrometry

ME

Maceration

MS

Mass spectrometry

MTBE

Methyl tert-butyl ether

MUDPIT

Multidimensional protein identification technology

NADP

Nicotinamide adenine dinucleotide phosphate

nanoESI-Q-TOF

Nano-electrospray ionization quadrupole time-of-flight

nanoSIMS

Nanoscale secondary ion mass spectrometry

NMR

Nuclear magnetic resonance

PARC

PEI-assisted RuBisCO cleanup

PEI

Polyethylenimine

PEG

Polyethylene glycol

pI

Point isoelectric

PM

Sodium phosphate/methanol

PR

Pathogenesis related

PTMs

Posttranslational modifications

RP-HPLC

Reversed-phase chromatography

RP-HPLC-UV-ESI-MS

Reversed-phase high-performance liquid chromatography-ultraviolet-electrospray ionization mass spectrometry

RuBisCO

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SEC-UV

Size exclusion chromatography-ultraviolet

SDS-PAGE

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

(TAP)-MS

Tandem affinity purification mass spectrometry

TCA

Trichloroacetic acid

UAE

Ultrasound-assisted extraction

UHPLC-DAD-ESI-MS/MS

Ultrahigh-performance liquid chromatography with diode array detector coupled to electrospray ionization tandem mass spectrometry

UHPLC-HR-MS

Ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry

WM

Water/methanol

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Financiadora de Estudos e Projetos (FINEP).

References

  1. 1.
    Alvarez S, Naldrett MJ (2016) Plant structure and specificity - challenges and sample preparation consideration for proteomics. In: Mirzaei H, Carrasco M (Eds.) Modern proteomics – Sample preparation, analysis and practical applications. Advances in Experimental Medicine and Biology, vol 919. Springer, Cham, pp 63–82CrossRefGoogle Scholar
  2. 2.
    Arruda MAZ (2007) Trends in sample preparation, 1st edn. Nova Science, New York, p 304Google Scholar
  3. 3.
    Baginsky S (2009) Plant proteomic: concept, application, and novel strategies for data interpretation. Mass Spectrom Rev 28:93–120PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Barbosa HS, Souza DLQ, Koolen HHF, Gozzo FC, Arruda MAZ (2013) Sample preparation focusing on plant proteomics: extraction, evaluation and identification of proteins from sunflower seeds. Anal Methods 5(1):116–123CrossRefGoogle Scholar
  5. 5.
    Barbosa HS, Arruda SCC, Azevedo RA, Arruda MAZ (2012) New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins. Anal Bioanal Chem 402(1):299–314PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Battaglia M, Covarrubias AA (2013) Late Embryogenesis Abundant (LEA) protein in legumes. Front Plant Sci 4(6):1–11Google Scholar
  7. 7.
    Berrada W, Naya A, Iddar A, Bourhim N (2002) Purification and characterization of cytosolic glycerol-3-phosphate dehydrogenase from skeletal muscle of jerboa (Jaculus orientalis). Mol Cell Biochem 231:117–127PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Bojko B, Reyes-Garcés N, Bessonneau V, Goryński K, Mousavi F, Silva EAS, Pawliszyn J (2014) Solid-phase microextraction in metabolomics. Trends Anal Chem 61:168–180CrossRefGoogle Scholar
  9. 9.
    Brancalion ML, Arruda MAZ (2005) Evaluation of medicinal plant decomposition efficiency using microwave ovens and mini-vials for Cd determination by TS-FF-AAS. Michrochimica Acta 150:283–290CrossRefGoogle Scholar
  10. 10.
    Brown JWS, Flavell RB (1981) Fractionation of wheat gliadin and glutenin subunits by two-dimensional electrophoresis and the role of group 6 and group 2 chromosomes in gliadin synthesis. Theor Appl Genet 59(6):349–359PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Cánovas FM, Dumas-Gaoudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4(2):285–298PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Chacón-Madrid K, Pessôa GS, Salazar MM, Pereira GAG, Carneiro GMT, Lima TB, Gozzo FC, Arruda MAZ (2017) Evaluation of genetically modified Arabidopsis thaliana through metallomic and enzymatic approaches focusing on mass spectrometry-based platforms. Int J Mass Spectrom 418:6–14CrossRefGoogle Scholar
  13. 13.
    Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Chemat F, Tomao V, Virot M (2008) Ultrasound-assisted extraction in food analysis. In: Ötles S (ed) Handbook of food analysis instruments. CRC Press, Boca Raton, pp 85–99Google Scholar
  15. 15.
    Chen L, Jin H, Ding L, Zhang H, Li J, Qu C, Zhang H (2008) Dynamic microwave-assisted extraction of flavonoids from Herba Epimedii. Sep Purif Technol 59(1):50–57CrossRefGoogle Scholar
  16. 16.
    Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6(20):5504–5516PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Chen SX, Shao ZZ (2009) Isolation and diversity analysis of arsenite-resistant bacteria in communities enriched from deep-sea sediments of the Southwest Indian Ocean Ridge. Extremophiles 13:39–48PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Chevreux S, Roudeau S, Fraysse A, Carmona A, Devès G, Solari PL, Mounicou S, Lobinski R, Ortega R (2009) Multimodal analysis of metals in copper-zinc superoxide dismutase isoforms separated on electrophoresis gels. Biochimie 91:1324–1327PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Dahmoune F, Nayak B, Moussi K, Reminia H, Madani K (2015) Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem 166:585–595PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Damerval C, Vienne D, Zivy M, Thiellemnt H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7(1):52–54CrossRefGoogle Scholar
  21. 21.
    Ernst M, Silva DB, Silva RR, Vêncio RZN, Lopes NP (2014) Mass spectrometry in plant metabolomics strategies: from analytical platforms to data acquisition and processing. Nat Prod Rep 31:784–806PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Fang X, Wanga J, Hao J, Li X, Guo N (2015) Simultaneous extraction, identification and quantification of phenolic compounds in Eclipta prostrata using microwave-assisted extraction combined with HPLC–DAD–ESI–MS/MS. Food Chem 188:527–536PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. [Yeast two hybrid]. Nature 340(6230):245–246PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Fiol M, Adermann S, Neugart S, Rohn S, Mügge C, Schreiner M, Krumbein A, Kroh LW (2012) Highly glycosylated and acylated flavonols isolated from kale (Brassica oleracea var. sabellica)–structure–antioxidant activity relationship. Food Res Int 47(1):80–89CrossRefGoogle Scholar
  25. 25.
    Flis P, Ouerdane L, Grillet L, Curie C, Mari S, Lobinski R (2016) Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection. New Phytol 211:1129–1141PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Gong Z-G, Hu J, Wu X, Xu Y-J (2017) The recent developments in sample preparation for mass spectrometry-based metabolomics. Crit Rev Anal Chem 47(4):325–331PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4(12):3665–3685PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hao J, Liebeke M, Astle W, Iorio MD, Bundy JG, Ebbels TMD (2014) Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat Protoc 9(6):1416–1427PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19:5–14CrossRefGoogle Scholar
  31. 31.
    Hemwimon S, Pavasant P, Shotipruk A (2007) Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Sep Purif Technol 54:44–50CrossRefGoogle Scholar
  32. 32.
    Jiménez MS, Gomez MT, Rodriguez L, Martinez L, Castillo JR (2009) Some pitfallsin PAGE-LA-ICP-MS for quantitative elemental speciation of dissolved organic matter and metallomics. Anal Bioanal Chem 393:699–707PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Job D, Haynes PA, Zivy M (2011) Plant proteomics. Proteomics 11(9):1157–1158Google Scholar
  34. 34.
    Khan MK, Abert-Vian M, Fabiano-Tixier AS, Dangles O, Chemat F (2010) Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem 119:851–858CrossRefGoogle Scholar
  35. 35.
    Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5(3):536–549PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kim HK, Verpoorte R (2010) Sample preparation for plant metabolomics. Phytochem Anal 21:4–13PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Klein-Júnior LC, Viaene J, Salton J, Koetz M, Gasper AL, Henriques AT, Vander Heyden Y (2016) The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part I: extraction and fractionation optimization based on metabolic profiling. J Chromatogr A 1463:60–70PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Konishi H, Ishiguro K, Komatsu SA (2001) Proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics 1(9):1162–1171PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Koyu H, Kazan A, Demir S, Haznedaroglu MZ, Yesil-Celiktas O (2018) Optimization of microwave assisted extraction of Morus nigra L. fruits maximizing tyrosinase inhibitory activity with isolation of bioactive constituents. Food Chem 248:183–191PubMedCrossRefGoogle Scholar
  40. 40.
    Krishnan HB, Natarajan SS (2009) A rapid method for depletion of Rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins. Phytochemistry 70(17–18):1958–1964PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Li S, Strid Å (2005) Anthocyanin accumulation and changes in CHS and PR-5 gene expression in Arabidopsis thaliana after removal of the inflorescence stem (decapitation). Plant Physiol Biochem 43(6):521–525PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438(7070):1040–1044PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Lopes Júnior CA, Mazafera P, Arruda MAZ (2014) A comparative ionomic approach focusing on cadmium effects in sunflowers (Helianthus annuus L.). Environ Exp Bot 107:180–186CrossRefGoogle Scholar
  44. 44.
    Lopes Júnior CA, Barbosa HS, Galazzi RM, Koolen HHF, Gozzo FC, Arruda MAZ (2015) Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures. Ecotoxicol Environ Saf 119:170–177PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Maciel BCM, Barbosa HS, Pessôa GS, Salazar MM, Pereira GAG, Gonçalves DC, Ramos CHI, Arruda MAZ (2014) Comparative proteomics and metallomics studies in Arabidopsis thaliana leaf tissues: evaluation of the selenium addition in transgenic and nontransgenic plants using two-dimensional difference gel electrophoresis and laser ablation imaging. Proteomics 14:904–914PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Arruda MAZ, Magalhães CS, Garcia JS, Lopes AS, Figueiredo EC (2007) Strategies for Sample Preparation Focusing Biomolecules Determination/Characterization. In: Arruda MAZ (Ed.) Trends in Sample Preparation, 1st ed. Nova Science Publishers, New York, pp 245–288Google Scholar
  47. 47.
    Magalhães CS, Arruda MAZ (2007) Sample preparation for metalloprotein analysis: a case study using horse chestnuts. Talanta 71:1958–1963PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Mahmud I, Sternberg S, Williams M, Garrett TJ (2017) Comparison of global metabolite extraction strategies for soybeans using UHPLC-HRMS. Anal Bioanal Chem 409:6173–6180PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Molloy MP, Herbert BR, Walsh BJ, Tyler MI, Traini M, Sanchez JC, Hochstrasser DF, Williams KL, Gooley AA (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19(5):837–844PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Moratari SR, Saidelles APF, Barin JS, Flores EMM (2004) A simple procedure for decomposition of human hair using polypropylene vials to selenium determination by hydride generation atomic absorption spectrometry. Microchimica Acta 148:157–162CrossRefGoogle Scholar
  51. 51.
    Moritz T, Johansson A (2007) Plant metabolomics. In: Griffiths W (ed) Metabolomics, metabonomics and metabolite profiling. RSC Publishing, Cambridge, pp 254–272CrossRefGoogle Scholar
  52. 52.
    Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38:1119–1138PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16(9):373–378PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Oniszczuka A, Olech M (2016) Optimization of ultrasound-assisted extraction and LC-ESI–MS/MS analysis of phenolic acids from Brassica oleracea L. var. sabellica. Ind Crop Prod 83:359–363CrossRefGoogle Scholar
  55. 55.
    Pecsvaradi A, Nagy Z, Varga A, Vashegyi A, Labádi I, Galbács G, Zsoldos F (2009) Chloroplastic glutamine synthetase is activated by direct binding of aluminium. Physiol Plant 135:43–50PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Peltier JB, Ytterberg AJ, Sun Q, Wijk KJ (2004) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279(47):49367–49383PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Phizicky E, Bastiaens PIH, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422(6928):208–215PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Raab A, Ploselli B, Munro C, Thomas-Oates J, Feldmann J (2009) Evaluation of gel electrophoresis conditions for the separation of metal-tagged proteins with subsequent laser ablation ICP-MS detection. Electrophoresis 30:303–314PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Rakwal R, Komatsu S (2000) Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis. Electrophoresis 21(12):2492–2500PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Rep M, Dekker HL, Vossen JH, Boer AD, Houterman PM, Speijer D, Back JW, Koster CG, Cornelissen BJC (2002) Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. Plant Physiol 130(2):904–917PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rojano-Delgado AM, Priego-Capote F, De Prado R, Castro MDL (2014) Qualitative/quantitative strategy for the determination of glufosinate and metabolites in plants. Anal Bioanal Chem 406:611–620PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Rostagno MA, Palma M, Barroso CG (2003) Ultrasound-assisted extraction of soy isoflavones. J Chromatogr A 1012:119–128PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Salem MA, Jüppner J, Bajdzienko K, Giavalisco P (2016) Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods 12(45):1–15Google Scholar
  64. 64.
    Santoni V, Kieffer S, Desclaux D, Masson F, Rabilloud T (2000) Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21(16):3329–3344PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Sevcenco AM, Pinkse MWH, Bol E, Krijger GC, Wolterbeek HT, Verhaert PDE, Hagedoorn PL, Hagen WR (2009) The tungsten metallome of Pyrococcus furiosus. Metallomics 1:395–402PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Sheffield J, Taylor N, Fauquet C, Chen S (2006) The cassava (Manihot esculenta Crantz) root proteome: protein identification and differential expression. Proteomics 6(5):1588–1598PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Silva MO, Sussulini A, Arruda MAZ (2010) Metalloproteomics as na interdisciplinary area involving proteins and metals. Expert Rev Proteomics 7(3):387–400PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Sun Y, Liu D, Chen J, Ye X, Yu D (2011) Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrason Sonochem 18(1):243–249PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Sussulini A, Garcia JS, Mesko MF, Flores EMM, Arruda MAZ (2006) Evaluation of soybean seed protein extraction focusing on metalloprotein analysis. Microchim Acta 158:173–180CrossRefGoogle Scholar
  70. 70.
    Sussulini A, Garcia JS, Arruda MAZ (2007a) Microwave-assisted decomposition of polyacrylamide gels containing metalloproteins using mini-vials: an auxiliary strategy for metallomics studies. Anal Biochem 361:146–148PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Sussulini A, Souza GHMF, Eberlin MN, Arruda MAZ (2007b) Comparative metallomics for transgenic and nontrasngenic soybeans. J Anal At Spectrom 22:1501–1506CrossRefGoogle Scholar
  72. 72.
    Teo CC, Chong WPK, Ho YS (2013) Development and application of microwave-assisted extraction technique in biological sample preparation for small molecule analysis. Metabolomics 9:1109–1128CrossRefGoogle Scholar
  73. 73.
    Vieira V, Prieto MA, Barros L, Coutinho JAP, Ferreira O, Ferreira ICFR (2017) Optimization and comparison of maceration and microwave extraction systems for the production of phenolic compounds from Juglans regia L. for the valorization of walnut leaves. Ind Crop Prod 107:341–352CrossRefGoogle Scholar
  74. 74.
    Villas-Boas SG, Mas S, Åkesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24(5):613–646PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Wang LJ, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17(6):300–312CrossRefGoogle Scholar
  76. 76.
    Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131(3):1104–1123PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Wei J, Chen J, Liang X, Guo XJ (2016) Microwave-assisted extraction in combination with HPLC-UV for quantitative analysis of six bioactive oxoisoaporphine alkaloids in Menispermum dauricum DC. Biomed Chromatogr 30:241–248PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Wu L, Song Y, Hu M, Yu C, Zhang H, Yu A, Ma Q, Wang Z (2015) Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey. J Sep Sci 38(17):2953–2959PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Xi J, Wang X, Li S, Zhou X, Yue L, Fan J, Hao D (2006) Polyethylene glycol fractionation improved detection of low-abundant proteins by two-dimensional electrophoresis analysis of plant proteome. Phytochemistry 67(21):2341–2348PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yang C, Wang J, Li D (2013) Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review. Anal Chim Acta 799:8–22PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Zhang Y, Gao P, Xing Z, Jin S, Chen Z, Liu L, Constantino N, Wang X, Shi W, Yuan JS, Dai SY (2013) Application of an improved proteomics method for abundant protein cleanup: molecular and genomic mechanisms study in plant defense. Mol Cell Proteomics 12(11):3431–3442PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zhang H-F, Yang X-H, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22:672–688CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rodrigo Moretto Galazzi
    • 1
  • Jemmyson Romário de Jesus
    • 1
  • Marco Aurélio Zezzi Arruda
    • 1
    Email author
  1. 1.Universidade Estadual de Campinas – UnicampCampinasBrazil

Personalised recommendations