A Spatially Explicit Life Cycle Assessment Tool for Residential Buildings in Lower Saxony: Development and Sample Application

  • Ann-Kristin MühlbachEmail author
  • Michael W. Strohbach
  • Thomas Wilken
Part of the Sustainable Production, Life Cycle Engineering and Management book series (SPLCEM)


The ambitious goal of the German federal government to achieve a “nearly climate-neutral” building stock by 2050 should be underpinned by detailed knowledge on the whole life cycle of the housing stock in Germany. Therefore, a life cycle assessment (LCA) tool is developed, that combines the embodied energy (energy used for production of a building) as well as the energy consumption of existing buildings. By combining LCA data with a customized extract from the 2011 census for parts for Lower Saxony, the tool allows for spatially explicit assessments on a square kilometer grid. The classification of buildings, using building type and construction year, offers the possibility to quickly evaluate the building stock without the need for detailed information. In the future, the tool will be expanded to enable comparing the impact of actions like renovation of existing buildings on the one hand, and demolition with new construction on the other. Thus, scenarios can be analyzed and priorities for interventions identified. Combined with other information in regional sustainability assessments, for example mobility analyses and environmental impacts of land consumption, the tool will allow exploring paths to greater sustainability for the built environment.


LCA Sustainable housing stock Spatial data Embodied energy 



This research was funded by the program “Science for Sustainable Development” of the Volkswagen Foundation and the Ministry for Science and Culture of Lower Saxony (metapolis, grant no. ZN3121). We would like to thank Clemens Schult from the Landesamt für Statistik Niedersachsen (LSN) for the customized census data and all our colleagues of the METAPOLIS team who contributed to our research.


  1. 1.
    Rees WE (1999) The built environment and the ecosphere: a global perspective. Build Res Inf 27:206–220. Scholar
  2. 2.
    Federal Ministry for Economic Affairs and Energy, Public Relations Division (2018) Energy transition in the building sector. Enhancing energy efficiency in buildings. Accessed 21 Nov 2018
  3. 3.
    Bürger V, Hesse T, Palzer A, Köhler B, Herkel S, Engelmann P, Quac D (2017) Klimaneutraler Gebäudebestand 2050. Energieeffizienzpotenziale und die Auswirkungen des Klimawandels auf den Gebäudebestand. In: Umweltbundesamt (ed) Climate change 26/2017. Dessau-Roßlau, pp 40–56Google Scholar
  4. 4.
    Sharma A, Saxena A, Sethi M, Shree V (2011) Life cycle assessment of buildings: a review. Renew Sust Energ Rev 15:871–875. Scholar
  5. 5.
    Braune A, Ruiz Durán C, Gartner J (2018) Life cycle assessments—a guide on using the LCA. Technical report, German Sustainable Building Council. DGNB GUIDE April 2018Google Scholar
  6. 6.
    Holden E (2004) Ecological footprints and sustainable urban form. J Hous Built Environ 19:91–109. Scholar
  7. 7.
    Neumann D, Sedrez M, Carlow VM (2017) Scenarios for Sustainable development of the Lower Saxony Metapolis. In: Schröder J, Carta M, Ferretti M, Lino B (eds) Territories: rural-urban strategies. Jovis Berlin, pp 258–265Google Scholar
  8. 8.
    Landesamt für Statistik Niedersachsen [LSN] (2018) LSN Online-regional-datenbank für Niedersachsen. Accessed 20 Nov 2018
  9. 9.
    Federal Statistical Office. Census 2011. Wiesbaden. Accessed 20 Nov 2018
  10. 10.
    Loga T, Stein B, Diefenbach N, Born R (2015) Deutsche Wohngebäudetypo logie. Beispielhafte Maßnahmen zur Verbesserung der Energieeffizienz von typi schen Wohngebäuden. 2nd edn. Technical report, Institut Wohnen und Umwelt, DarmstadtGoogle Scholar
  11. 11.
    Rössig S Federal Institute for Research on Buildings, Urban Affairs and Spatial Development (BBSR). Referat II 6 Bauen und Umwelt. Tool: eLCA. Accessed 20 Nov 2018
  12. 12.
    Ökobaudat (2016) Bundesministerium des Innern, für Bau und Heimat. Refe rat Presse; Online-Kommunikation; In: Öffentlichkeitsarbeit (ed) Accessed 20 Nov 2018
  13. 13.
    DGNB system-New buildings criteria set. Version 2018. Environmental quality. Building life cycle assessment_ENV1.1. pp 51–52. Technical report, German Sustainable Building Council (DGNB). Accessed 20 Nov 2018
  14. 14.
    DIN Deutsches Institut für Normung e.V. (2008) Buildings costs-Part 1: building construction. 91.010.20 (DIN 276-1). Berlin. BeuthGoogle Scholar
  15. 15.
    Umweltbundesamt. Arbeitsgemeinschaft Energiebilanzen (2017) Auswer tungstabellen zur Energiebilanz der Bundesrepublik Deutschland 1990 bis 2016. Sep 2017. Accessed 20 Nov 2018
  16. 16.
    Deutsche Energie-Agentur GmbH (ed) (2018) dena-GEBÄUDEREPORT KOMPAKT 2018. Statistiken und Analysen zur Energieeffizienz im Gebäudebe stand. Das Druckteam. Berlin, pp 10–15Google Scholar
  17. 17.
    Federal Statistical Office (2014) Census 2011. Nutzer-Kurzinformation zu SAFE. Technical report Accessed 20 Nov 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ann-Kristin Mühlbach
    • 1
    Email author
  • Michael W. Strohbach
    • 2
  • Thomas Wilken
    • 1
  1. 1.Institute of Building Services and Energy Design, Technische Universität BraunschweigBrunswickGermany
  2. 2.Landscape Ecology and Environmental Systems Analysis, Institute of Geoecology, Technische Universität BraunschweigBrunswickGermany

Personalised recommendations