Advertisement

External Costs as Indicator for the Environmental Performance of Power Systems

  • Lukas LazarEmail author
  • Ingela Tietze
Chapter
Part of the Sustainable Production, Life Cycle Engineering and Management book series (SPLCEM)

Abstract

Power system planning progressively demands integrated assessment methodologies to meet the requirements of environmental sustainability goals. An approach to include environmental impacts into power system decision procedures is the use of external costs. To investigate the applicability of external costs for the environmental assessment of power systems, we integrate external costs into the method of Life Cycle Assessment (LCA) on the case of power generation technologies. The correlation between the LCA results considering external costs on the one hand and on the other hand standard midpoint impact assessment is investigated by regression analysis. We found that eutrophication (marine and terrestrial), acidification, photochemical ozone creation, respiratory effects and climate change show correlation (R2 = 0.97–0.66). In contrast, the categories concerning land and resource use are not correlating. The correlation mainly depends on the elementary flows which are accounted for. External costs lack in including the variety of elementary flows which are considered in the midpoint assessment. An application of external costs as sole impact indicator of power systems is not recommendable at the current state of development and further research activity for the use in LCA is proposed.

Keywords

External costs Life Cycle Assessment Impact assessment Power systems Sustainable energy 

Supplementary material

476467_1_En_7_MOESM1_ESM.docx (6.6 mb)
Supplementary material 1 (DOCX 6766 kb)

References

  1. 1.
    BP (2018) BP Statistical review of world energy 2018, 67th edition, LondonGoogle Scholar
  2. 2.
    Stern DI (1997) Limits to substitution and irreversibility in production and consumption: a neoclassical interpretation of ecological economics. Ecol Econ 21(3):197–215.  https://doi.org/10.1016/S0921-8009(96)00103-6MathSciNetCrossRefGoogle Scholar
  3. 3.
    United Nations (2017) World population prospects: the 2017 revision: volume I: comprehensive tables (ST/ESA/SER.A/399), New YorkGoogle Scholar
  4. 4.
    IPCC (2014) Climate change 2014: mitigation of climate change. contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Umweltbundesamt (2018) National trend tables for the German atmospheric emission reporting 1990—2016 version for the EU-submission 15.01.2018. https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen. Accessed 07 Aug 2018
  6. 6.
    Umweltbundesamt (2018) National trend tables for the German atmospheric emission reporting 1990—2016 Final version 14.02.2018 (v1.0). https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen. Accessed 07 Aug 2018
  7. 7.
    Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461(7263):472.  https://doi.org/10.1038/461472aCrossRefGoogle Scholar
  8. 8.
    Steffen W, Richardson K, Rockström J et al. (2015) Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347(6223):1259855.  https://doi.org/10.1126/science.1259855CrossRefGoogle Scholar
  9. 9.
    Wang J-J, Jing Y-Y, Zhang C-F et al (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew Sustain Energy Rev 13(9):2263–2278.  https://doi.org/10.1016/j.rser.2009.06.021CrossRefGoogle Scholar
  10. 10.
    Rauner S, Budzinski M (2017) Holistic energy system modeling combining multi-objective optimization and life cycle assessment. Environ Res Lett 12(12):124005.  https://doi.org/10.1088/1748-9326/aa914dCrossRefGoogle Scholar
  11. 11.
    Pauliuk S, Arvesen A, Stadler K et al (2017) Industrial ecology in integrated assessment models. Nat Clim Change 7(1):13–20.  https://doi.org/10.1038/nclimate3148CrossRefGoogle Scholar
  12. 12.
    Gagnon L, Bélanger C, Uchiyama Y (2002) Life-cycle assessment of electricity generation options: the status of research in year 2001. Energy Policy 30(14):1267–1278.  https://doi.org/10.1016/S0301-4215(02)00088-5CrossRefGoogle Scholar
  13. 13.
    Laurin L, Amor B, Bachmann TM et al (2016) Life cycle assessment capacity roadmap (section 1): decision-making support using LCA. Int J Life Cycle Assess 21(4):443–447.  https://doi.org/10.1007/s11367-016-1031-yCrossRefGoogle Scholar
  14. 14.
    European Commission (1995) ExternE: externalities of energy. Series ExternE, vol 1. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  15. 15.
    Markandya A, Bigano A, Porchia R (2010) The social costs of electricity: scenarios and policy implications. Edward Elgar Publishing, Cheltenham, UKCrossRefGoogle Scholar
  16. 16.
    European Commission (2009) NEEDS New energy externalities developments for sustainability—integrated project: publishable final activity report M1–M54. Sixth Framework ProgrammeGoogle Scholar
  17. 17.
    Rabl A, Spadaro J (2005) Final technical report—externalities of energy: extension of accounting framework and policy applications (ExternE-Pol)Google Scholar
  18. 18.
    Friedrich R, Bachmann T, Nocker L de et al. (2004) NewExt: new elements for the assessment of external costs from energy technologies. Final report contract NENG1-CT2000–00129. EC DG ResearchGoogle Scholar
  19. 19.
    Strantzali E, Aravossis K (2016) Decision making in renewable energy investments: a review. Renew Sustain Energy Rev 55:885–898.  https://doi.org/10.1016/j.rser.2015.11.021CrossRefGoogle Scholar
  20. 20.
    Means P, Guggemos A (2015) Framework for life cycle assessment (LCA) based environmental decision making during the conceptual design phase for commercial buildings. Procedia Eng 118:802–812.  https://doi.org/10.1016/j.proeng.2015.08.517CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Liang K, Li J et al (2016) LCA as a decision support tool for evaluating cleaner production schemes in iron making industry. Environ Progr Sustain Energy 35(1):195–203.  https://doi.org/10.1002/ep.12208CrossRefGoogle Scholar
  22. 22.
    Yilmaz O, Anctil A, Karanfil T (2015) LCA as a decision support tool for evaluation of best available techniques (BATs) for cleaner production of iron casting. J Clean Prod 105:337–347.  https://doi.org/10.1016/j.jclepro.2014.02.022CrossRefGoogle Scholar
  23. 23.
    Meyer DE, Upadhyayula VKK (2014) The use of life cycle tools to support decision making for sustainable nanotechnologies. Clean Technol Environ Policy 16(4):757–772.  https://doi.org/10.1007/s10098-013-0686-3CrossRefGoogle Scholar
  24. 24.
    Luglietti R, Rosa P, Terzi S et al (2016) Life cycle assessment tool in product development: environmental requirements in decision making process. Procedia CIRP 40:202–208.  https://doi.org/10.1016/j.procir.2016.01.103CrossRefGoogle Scholar
  25. 25.
    European Parliament, Council of the European Union (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, vol 5Google Scholar
  26. 26.
    United States Environmental Protection Agency Renewable Fuel Standard Program (RFS2) Regulatory impact analysis: assessment and standards division, Washington, DCGoogle Scholar
  27. 27.
    Deutsches Institut für Normung (2006) DIN EN ISO 14044: Umweltmanagement—Ökobilanz—Anforderungen und Anleitungen (ISO 14044:2006); Deutsche und Englische Fassung EN ISO 14044:2006. Beuth Verlag, BerlinGoogle Scholar
  28. 28.
    Deutsches Institut für Normung (2009) DIN EN ISO 14040: Umweltmanagement–Ökobilanz–Grundsätze und Rahmenbedingungen (ISO 14040: 2006); Deutsche und Englische Fassung EN ISO 14040: 2006. Beuth Verlag, BerlinGoogle Scholar
  29. 29.
    Bruijn H, Duin R, Huijbregts MAJ et al (eds) (2004) Handbook on life cycle assessment: operational guide to the ISO standards. Eco-efficiency in industry and science, vol 7. Kluwer Academic Publishers, DordrechtGoogle Scholar
  30. 30.
    Goedkoop M, Heijungs R, Huijbregts M et al (2013) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised)Google Scholar
  31. 31.
    European Commission (2011) Joint Research Centre. Institute for Environment and Sustainability. Recommendations for life cycle impact assessment in the European context: institute for environment and sustainability: international reference life cycle data system (ILCD) handbook-recommendations for life cycle impact assessment in the European context. Publications Office of the European Union, LuxembourgGoogle Scholar
  32. 32.
    Goedkoop MJ, Spriensma R (2000) The eco-indicator 99: a damage oriented method for life cycle impact assessment methodology report. Second edition, AmersfoortGoogle Scholar
  33. 33.
    Itsubo N, Inaba A (2005) LIME2, Life-cycle impact assessment method based on endpoint modelling: summary. Japan Environmental Management Association for IndustryGoogle Scholar
  34. 34.
    Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS): version 2000—General system characteristics, GothenburgGoogle Scholar
  35. 35.
    University of Stuttgart (2018) EcoSense Web2. http://ecosenseweb.ier.uni-stuttgart.de/. Accessed 09 Aug 2018
  36. 36.
    European Commission (2010) Joint Research Centre. Institute for Environment and Sustainability. International reference life cycle data system (ILCD) handbook—general guide for life cycle assessment—detailed guidance, First edition. Publications Office of the European Union, LuxembourgGoogle Scholar
  37. 37.
    European Commission (2012) Joint Research Centre. Institute for Environment and Sustainability. Characterisation factors of the ILCD recommended life cycle impact assessment methods. Database and supporting information. Publications Office of the European Union, LuxembourgGoogle Scholar
  38. 38.
    Weidema BP, Bauer C, Hischier R et al (2013) Overview and methodology: data quality guideline for the ecoinvent database version 3: ecoinvent report 1 (v3). The ecoinvent Centre, St. GallenGoogle Scholar
  39. 39.
    Fisher RA (1971) The design of experiments. Hafner Press, New YorkGoogle Scholar
  40. 40.
    Fthenakis V, Kim HC (2009) Land use and electricity generation: a life-cycle analysis. Renew Sustain Energy Rev 13(6–7):1465–1474.  https://doi.org/10.1016/j.rser.2008.09.017CrossRefGoogle Scholar
  41. 41.
    de Haes HAU, Heijungs R, Suh S et al (2004) Three strategies to overcome the limitations of life-cycle assessment. J Ind Ecol 8(3):19–32.  https://doi.org/10.1162/1088198042442351CrossRefGoogle Scholar
  42. 42.
    Wernet G, Bauer C, Steubing B et al (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21(9):1218–1230.  https://doi.org/10.1007/s11367-016-1087-8CrossRefGoogle Scholar
  43. 43.
    von Hirschhausen C, Gerbaulet C, Kemfert C et al (2015) German nuclear phase-out enters the next stage: Electricity supply remains secure—Major challenges and high costs for dismantling and final waste disposal. DIW Econ Bull 5(22/23):293–301Google Scholar
  44. 44.
    Pizzol M, Christensen P, Schmidt J et al (2011) Eco-toxicological impact of “metals” on the aquatic and terrestrial ecosystem: a comparison between eight different methodologies for Life Cycle Impact Assessment (LCIA). J Clean Prod 19(6–7):687–698.  https://doi.org/10.1016/j.jclepro.2010.12.008CrossRefGoogle Scholar
  45. 45.
    Nordborg M, Arvidsson R, Finnveden G et al (2017) Updated indicators of Swedish national human toxicity and ecotoxicity footprints using USEtox 2.01. Environ Impact Assess Rev 62:110–114.  https://doi.org/10.1016/j.eiar.2016.08.004CrossRefGoogle Scholar
  46. 46.
    Jeon J (2015) The strengths and limitations of the statistical modeling of complex social phenomenon: focusing on SEM, path analysis, or multiple regression models. Int J Econ Manage Eng 9:1634–1642.  https://doi.org/10.5281/zenodo.1105869

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Industrial Ecology (INEC)Pforzheim UniversityPforzheimGermany

Personalised recommendations