Advertisement

Simulation and Evaluation of a Model for Assistive Smart City

  • Marcelo Josué Telles
  • Jorge Luis Victória Barbosa
  • Rodrigo da Rosa Righi
  • José Vicente Canto dos Santos
  • Márcio Joel Barth
  • Leandro Mengue
Chapter
Part of the Urban Computing book series (UC)

Abstract

This chapter presents the evaluation of the Model for Assistive Smart Cities (MASC), which is intended for ubiquitous accessibility. The model was evaluated with data obtained from a contextual simulator (SIAFU), applied in the central region of São Leopoldo city, Brazil. Unlike other approaches, the evaluation considers multiple accesses asynchronously, indicating that the model meets massive applications with response time within the standards indicated for this type of application. The evaluation considered requests from three different groups of users, characterized as: people with disabilities (PwDs), health professionals involved in the care of PwDs, and managers of public administration. The results of the evaluation indicated the feasibility of implementing the model in Smart Cities. In addition to collaborating with accessibility, the model favors the decision-making in the management of services in the cities.

Notes

Acknowledgements

The authors wish to acknowledge that this work was financed by CNPq/Brazil (National Council for Scientific and Technological Development—http://www.cnpq.br) and Capes/Brazil (Coordination for the Improvement of Higher Education Personnel—http://www.capes.gov.br). We are also grateful to Unisinos (http://www.unisinos.br) for embracing this research.

References

  1. 1.
    Albino, V., Berardi, U., Dangelico, R.M.: Smart cities: definitions, dimensions, performance, and initiatives. J. Urban Technol. 22(1), 3–21 (2015). https://doi.org/10.1080/10630732.2014.942092 CrossRefGoogle Scholar
  2. 2.
    Aly, W.H.F.: Mnd wsn for helping people with different disabilities. Int. J. Distrib. Sens. Netw. 2014(Article ID 489289) (2014). https://doi.org/10.1155/2014/489289 CrossRefGoogle Scholar
  3. 3.
    Anthopoulos, L., Fitsilis, P.: From digital to ubiquitous cities: defining a common architecture for urban development. In: Proceedings of the 2010 Sixth International Conference on Intelligent Environments, IE ’10, pp. 301–306. IEEE Computer Society, Washington, DC (2010). http://dx.doi.org/10.1109/IE.2010.61
  4. 4.
    Barba, C., Mateos, M., Soto, P., Mezher, A., Igartua, M.: Smart city for vanets using warning messages, traffic statistics and intelligent traffic lights. In: Intelligent Vehicles Symposium (IV), 2012 IEEE, pp. 902–907. IEEE, Piscataway (2012).  https://doi.org/10.1109/IVS.2012.6232229
  5. 5.
    Barbosa, J., Tavares, J., Cardoso, I., Mota, B., Martini, B.: Trailcare: an indoor and outdoor context-aware system to assist wheelchair users. Int. J. Hum. Comput. Stud. 116, 1–14 (2018). https://doi.org/10.1016/j.ijhcs.2018.04.001 CrossRefGoogle Scholar
  6. 6.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)CrossRefGoogle Scholar
  7. 7.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009).  https://doi.org/10.4018/jswis.2009081901 CrossRefGoogle Scholar
  8. 8.
    Borgia, E.: The internet of things vision: key features, applications and open issues (2014). http://dx.doi.org/10.1016/j.comcom.2014.09.008. http://www.sciencedirect.com/science/article/pii/S0140366414003168 CrossRefGoogle Scholar
  9. 9.
    Brazilian Institute of Geography and Statistics. Available at: http://www.ibge.gov.br. Accessed 13 Jan 2018 (2010). Censo 2010
  10. 10.
    Christaller, W., Baskin, C.W.: Central Places in Southern Germany. Prentice-Hall, Englewood Cliffs (1966)Google Scholar
  11. 11.
    da Costa, C.A., Yamin, A.C., Geyer, C.F.R.: Toward a general software infrastructure for ubiquitous computing. IEEE Pervasive Comput. 7(1), 64–73 (2008). http://dx.doi.org/10.1109/MPRV.2008.21CrossRefGoogle Scholar
  12. 12.
    Ding, C., Wald, M., Wills, G.: A survey of open accessibility data. In: Proceedings of the 11th Web for All Conference, W4A ’14, pp. 37:1–37:4. ACM, New York (2014). http://doi.acm.org/10.1145/2596695.2596708
  13. 13.
    Ding, C., Wald, M., Wills, G.: Linked data-driven decision support for accessible travelling. In: Proceedings of the 12th Web for All Conference, W4A ’15, pp. 39:1–39:2. ACM, New York (2015). http://doi.acm.org/10.1145/2745555.2746681
  14. 14.
    Fernandes, H., Filipe, V., Costa, P., Barroso, J.: Location based services for the blind supported by {RFID} technology. Procedia Comput. Sci. 27, 2–8 (2014). http://dx.doi.org/10.1016/j.procs.2014.02.002. http://www.sciencedirect.com/science/article/pii/S1877050914000040. 5th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion, {DSAI} 2013
  15. 15.
    Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of big data on cloud computing: Review and open research issues. Inf. Syst. 47, 98–115 (2015). http://dx.doi.org/10.1016/j.is.2014.07.006. http://www.sciencedirect.com/science/article/pii/S0306437914001288 CrossRefGoogle Scholar
  16. 16.
    Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Computer 34(8), 57–66 (2001). https://doi.org/10.1109/2.940014 CrossRefGoogle Scholar
  17. 17.
    Isotani, S., Ibert Bittencourt, I., Francine Barbosa, E., Dermeval, D., Oscar Araujo Paiva, R.: Ontology driven software engineering: a review of challenges and opportunities. IEEE Lat. Am. Trans. 13(3), 863–869 (2015)CrossRefGoogle Scholar
  18. 18.
    Jang, M., Suh, S.T.: U-city: new trends of urban planning in Korea based on pervasive and ubiquitous geotechnology and geoinformation. In: Computational Science and Its Applications–ICCSA 2010, pp. 262–270. Springer, Fukuoka (2010)CrossRefGoogle Scholar
  19. 19.
    Kbar, G., Aly, S., Elsharawy, I., Bhatia, A., Alhasan, N., Enriquez, R.: Smart help at the workplace for persons with disabilities (shw-pwd). Int. J. Comput. Control Quantum Inf. Eng. 9(1), 84–90 (2015). http://waset.org/Publications?p=97 Google Scholar
  20. 20.
    Kim, E.: Oasis advancing open standards for the information society. Available at: http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/WS-Quality-Factors-v1.0.html. Accessed 15 Jan 2016 (2012). Web Services Quality Factors Version 1.0. 31 Oct
  21. 21.
    Kitchin, R.: The real-time city? Big data and smart urbanism. GeoJournal 79(1), 1–14 (2014)Google Scholar
  22. 22.
    Komninos, N.: The architecture of intelligent cities: integrating human, collective and artificial intelligence to enhance knowledge and innovation. In: 2nd IET International Conference on Intelligent Environments, 2006. IE 06, vol. 1, pp. 13–20. IET, Athens (2006)Google Scholar
  23. 23.
    Komninos, N., Bratsas, C., Kakderi, C., Tsarchopoulos, P.: Smart city ontologies: improving the effectiveness of smart city applications. J. Smart Cities 1 (2015). https://www.researchgate.net/publication/281740518_Smart_city_ontologies_Improving_the_effectiveness_of_smart_city_applications
  24. 24.
    Lee, J.H., Hancock, M.G., Hu, M.C.: Towards an effective framework for building smart cities: lessons from Seoul and San Francisco. Technol. Forecast. Soc. Chang. 89, 80–99 (2014). https://doi.org/10.1016/j.techfore.2013.08.033. http://www.sciencedirect.com/science/article/pii/S0040162513002187 CrossRefGoogle Scholar
  25. 25.
    Leem, C.S., Kim, B.G.: Taxonomy of ubiquitous computing service for city development. Pers. Ubiquit. Comput. 17(7), 1475–1483 (2013). http://dx.doi.org/10.1007/s00779-012-0583-5 CrossRefGoogle Scholar
  26. 26.
    Martin, M., Nurmi, P.: A generic large scale simulator for ubiquitous computing. In: Third Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services, 2006 (MobiQuitous 2006). IEEE Computer Society, San Jose (2006).  https://doi.org/10.1109/MOBIQ.2006.340388
  27. 27.
    Martins, M.V.L.: Frametrail: um framework para o desenvolvimento de aplicações orientadas a trilhas. Dissertação (mestrado em ciência da computação), Universidade do Vale do Rio dos Sinos, Programa de Pós-Graduação em Computação Aplicada (PIPCA), São Leopoldo (2011)Google Scholar
  28. 28.
    Mirri, S., Prandi, C., Salomoni, P., Callegati, F., Campi, A.: On combining crowdsourcing, sensing and open data for an accessible smart city. In: Next Generation Mobile Apps, Services and Technologies (NGMAST), 2014 Eighth International Conference on, pp. 294–299. IEEE, Oxford (2014).  https://doi.org/10.1109/NGMAST.2014.59
  29. 29.
    Molyneaux, I.: The art of application performance testing. from strategy to tools. SciTech Book News (2014)Google Scholar
  30. 30.
    OSM. Available at: http://www.openstreetmap.org/. Accessed 10 Nov 2017 (2015). Open Street Map
  31. 31.
    Perboli, G., Marco, A.D., Perfetti, F., Marone, M.: A new taxonomy of smart city projects. Transp. Res. Procedia 3, 470–478 (2014). https://doi.org/10.1016/j.trpro.2014.10.028. http://www.sciencedirect.com/science/article/pii/S2352146514001914. 17th Meeting of the EURO Working Group on Transportation, EWGT2014, 2–4 July 2014, Sevilla, SpainCrossRefGoogle Scholar
  32. 32.
    Petrolo, R., Loscrí, V., Mitton, N.: Towards a smart city based on cloud of things. In: Proceedings of the 2014 ACM International Workshop on Wireless and Mobile Technologies for Smart Cities, WiMobCity ’14, pp. 61–66. ACM, New York (2014). https://doi.org/10.1145/2633661.2633667
  33. 33.
    Piro, G., Cianci, I., Grieco, L., Boggia, G., Camarda, P.: Information centric services in smart cities. J. Syst. Softw. 88, 169–188 (2014). https://doi.org/10.1016/j.jss.2013.10.029. http://www.sciencedirect.com/science/article/pii/S0164121213002586 CrossRefGoogle Scholar
  34. 34.
    Shin, D.H.: Ubiquitous city: urban technologies, urban infrastructure and urban informatics. J. Inf. Sci. 35(5), 515–526 (2009). http://dx.doi.org/10.1177/0165551509100832 CrossRefGoogle Scholar
  35. 35.
    Shin, D.H.: Ubiquitous computing acceptance model: end user concern about security, privacy and risk. Int. J. Mobile Commun. 8(2), 169–186 (2010). http://dx.doi.org/10.1504/IJMC.2010.031446CrossRefGoogle Scholar
  36. 36.
    Sozialhelden, E.V.: Wheelmap open and free online map (2015). Available at: http://wheelmap.org/en/map. Accessed 22 Jan 2015. Wheelchair accessible places
  37. 37.
    Sukode, S., Gite, S., Agrawal, H.: Context aware framework in IoT: a survey. Int. J. Adv. Trends Comput. Sci. Eng. 4(1), 1–9 (2015). http://warse.org/pdfs/2015/ijatcse01412015.pdf Google Scholar
  38. 38.
    Tang, S., Lee, B.S., He, B.: Towards economic fairness for big data processing in pay-as-you-go cloud computing. In: Cloud Computing Technology and Science (CloudCom), 2014 IEEE 6th International Conference on, pp. 638–643. Singapore (2014). http://dx.doi.org/10.1109/CloudCom.2014.120Google Scholar
  39. 39.
    Tavares, J., Barbosa, J., Cardoso, I., Costa, C., Yamin, A., Real, R.: Hefestos: an intelligent system applied to ubiquitous accessibility. Universal Access in the Information Society pp. 1–19 (2015). https://doi.org/10.1007/s10209-015-0423-2 CrossRefGoogle Scholar
  40. 40.
    Vanderheiden, G.C.: Ubiquitous accessibility: building access features directly into the network to allow anyone, anywhere access to ubiquitous computing environments. In: C. Stephanidis (ed.) Universal Access in Human-Computer Interaction. Intelligent and Ubiquitous Interaction Environments. Lecture Notes in Computer Science, vol. 5615, pp. 432–437. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-02710-9_47 Google Scholar
  41. 41.
    Wagner, A., Barbosa, J.L., Barbosa, D.N.: A model for profile management applied to ubiquitous learning environments. Expert Syst. Appl. 41(4, Part 2), 2023–2034 (2014). https://doi.org/10.1016/j.eswa.2013.08.098. http://www.sciencedirect.com/science/article/pii/S0957417413007203 CrossRefGoogle Scholar
  42. 42.
    Washburn, D., Sindhu, U., Balaouras, S., Dines, R., Hayes, N., Nelson, L.: Helping CIOs understand smart city initiatives: defining the smart city, its drivers, and the role of the CIO. Forrester Research (2010)Google Scholar
  43. 43.
    Wiedemann, T., Barbosa, J.L.V., Barbosa, D.N.F., Rigo, S.: Recsim: a model for learning objects recommendation using similarity of sessions. J. Univ. Comput. Sci. 22(8), 1175–1200 (2016). http://www.jucs.org/jucs_22_8/recsim_a_model_for Google Scholar
  44. 44.
    World Report on Disability. Available at: http://www.who.int. Accessed 12 Jan 2017 (2011). World Health Organization
  45. 45.
    Yovanof, G., Hazapis, G.: An architectural framework and enabling wireless technologies for digital cities & intelligent urban environments. Wirel. Pers. Commun. 49(3), 445–463 (2009). http://dx.doi.org/10.1007/s11277-009-9693-4 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marcelo Josué Telles
    • 1
  • Jorge Luis Victória Barbosa
    • 1
  • Rodrigo da Rosa Righi
    • 1
  • José Vicente Canto dos Santos
    • 1
  • Márcio Joel Barth
    • 1
  • Leandro Mengue
    • 1
  1. 1.University of Vale do Rio dos Sinos—UNISINOSSão LeopoldoBrazil

Personalised recommendations