Certain Aspects of Problems with Non Homogeneous Reactions

  • Alejandro Omón ArancibiaEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 200)


This note reviews certain aspects of systems with reaction terms which are non homogeneous, this is nonlinearities such that their value at zero are different from zero. This type of reactions are frequent in problems where temperature is a relevant variable, for example strongly exothermic chemical reaction like a combustion chamber, or a bio-reactor. The topics to be reviewed are far from covering all the aspects to be analyzed in these problems, but despite this they are interesting for a broad audience.


Nonlinear eigenvalue problem Arrhenius reaction rate Blow-up 

2010 AMS Subject Classification

35J60 35P30 65N30 


  1. 1.
    Aguirre, P., Catañeda, A., Omón Arancibia, A. , Robledo, G.: On a planar system from chemical reacting modelling: a new geometrically/qualitative description (submitted manuscript)Google Scholar
  2. 2.
    Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. In: Cambridge Studies in Advance Mathematics, vol. 34. Cambridge University Press (1993)Google Scholar
  3. 3.
    Aris, R.: Some characteristic nonlinearities of chemical reaction engineering. In: Bishop, A.R., Campbell, D.K., Nicolaenko , B. (eds.) Nonlinear Problems: Present and Future. North-Holland (1982)Google Scholar
  4. 4.
    Aronson, D.G., Weinberger, H.F.: Multidimensiona diffusion arraising in population genetic. Adv. Math. 30, 33–76 (1978)CrossRefGoogle Scholar
  5. 5.
    Ash, E., Eaton, B., Gustafson, K.: Counting the number of solutions in combustion and reactive flow problems. Z. angew. Math. Phys. 41, 558–578 (1981)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bandle, C.: Existence theorems, qualitative results and a priori bounds for a class of nonlinear Dirichlet problems. Arch. Rat. Mech. Anal. 58, 219–238 (1975)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bazley, N., Wake, G.: The disappearence of criticality in the Theory of Thermal Ignition. Z. angew. Math. Phys. 29, 971–975 (1978)CrossRefGoogle Scholar
  8. 8.
    Bebernes, J., Eberly, D.: Mathematical problems from combustion theory. In: Applied Mathematical Sciences, vol. 83. Springer, Berlin (1989)Google Scholar
  9. 9.
    Bellman, R., Bentsman, J., Meerkov, S.: Vibrational control of systems with Arrhenius dymanics. J. Math. Ann. Appl. 91, 152–191 (1983)CrossRefGoogle Scholar
  10. 10.
    Berestycki, H., Nicolaneko, B., Scheurer, B.: Travling wave solutions to a combustion model and their singular limit. SIAM J. Math. Anal. 16, 1207–1242 (1985)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Berestycki, H., Larrouturou, B., Joquejoffre, J.M.: Mathematical investigation of the cold boundary difficulty. In: Dynamical issues in combustion theory, the IMA volumes in Applied Mathematics, vol. 35. Springer, Berlin (1987)Google Scholar
  12. 12.
    Berestycki, H., Larroauturou, B., Nirenberg, L.: A nonlinear elliptic problem describing the propagation of curved premixed flame. In: Mathematical Modeling in Combustion Theory, NATO Advance Research Work Series E. Applied Science, vol. 140 (1987)Google Scholar
  13. 13.
    Berger, M., Berger, M.: Perspectives in Nonlinearities: An introduction to Nonlinear analysis. In: Benjamin Cummings Mathematical Lectures Notes (1968)Google Scholar
  14. 14.
    Bers, L., John, F., Schechter, M.: Partial Differential Equations. Wiley & Sons. Inc, New York (1964)zbMATHGoogle Scholar
  15. 15.
    Boddington, T., Gray, P., Wake, G.: Criteria for thermal explosions with and without reactant consuption. Proc. R. Soc. Lond. A 357, 403–422 (1977)CrossRefGoogle Scholar
  16. 16.
    Börsch-Supan, W.: On the stability of bifurcation branches in thermal ignition. Z. angew. Math. Phys. 35, 332–344 (1984)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Brauner, C.M., Nicolaenko, B.: On nonlinear eigenvalue problems which extend into free boundary problems. In: Bardos, C., Lasry, J.M., Schatzman, M. (eds.) Lecture Notes in Mathematics, vol. 782, Chapter 4, pp. 61–100 (1980)Google Scholar
  18. 18.
    Buckmaster, J., Ludford, G.S.S.: Theory of Laminar flames. In: Cambridge Monographs on Mechanics and Mathematics, Cambridge University Press (1982)Google Scholar
  19. 19.
    Cohen, D.: Multiple solutions of nonlinear partial differential equations. Lecture Notes in Maths, vol. 322. Springer, Berlin (1973)Google Scholar
  20. 20.
    Crandall, M., Ravinowitz, P.H.: Bifurcation from a sinple eigenvalue. J. Func. Anal. 8, 321–340 (1971)CrossRefGoogle Scholar
  21. 21.
    Crandall, M., Ravinowitz, P.H.: Bifurcation, perturbation of simpe eigenvalues and stability. Arch. Rat. Mech. Appl. 8, 161–180 (1973)CrossRefGoogle Scholar
  22. 22.
    Dancer, N.: On the structure of solutions of an equation in catalysis theory when a parameter is large. J. Diff. Equations 37, 404–437 (1980)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Deimling, K.: Nonlinear Functional Analysis, 2nd edn. Dover, New York (2010)zbMATHGoogle Scholar
  24. 24.
    Dold, J.: Analysis of the early stage of thermal runaway. Q. J. Mech. Appl. Math. 38, 361–387 (1985)CrossRefGoogle Scholar
  25. 25.
    Du, Y., Lou, Y.: Proof of a conjecture for the perturbed Gelfand Equation from Combustion theory. J. Diff. Equations 173, 213–230 (2001)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Du, Y.: Exact multiplicity and S-shape bifurcation curve for some semilinear elliptic problems from combustion theory. SIAM J. Math. Anal. 32–4, 707–733 (2000)CrossRefGoogle Scholar
  27. 27.
    Dupaigne, L.: Stable solutions of elliptic partial equations. In: Monographs and Surveys in Pure and Applied Mathematics-143. Chapman & Hall (2007)Google Scholar
  28. 28.
    Fisher, R.A.: The advance of advantageous genes. Ann. Eugenics 7, 355–369 (1937)CrossRefGoogle Scholar
  29. 29.
    Franz-Kamenetskii, D.A.: Diffusion and Heat Exchange in Chemical Kinetics. Princeton University Press (english translation from the U.S.S.R. Academy of Science edition from 1947) (1955)Google Scholar
  30. 30.
    Friedman, A., McLoud, B.: Blow up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34, 425–447 (1985)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Fujita, H.: On the nonlinear equations \( \Delta u + \lambda e^{u} = 0 \) and \( {\displaystyle \frac{\partial u}{\partial t} = \Delta u + \lambda e^{u} }\). Bull. Am. Math. Soc. 75, 132–135 (1969)CrossRefGoogle Scholar
  32. 32.
    Gavallas, G.: Nonlinear Differential Equations of Chemically Reacting Systems. In: Springer Tracts in Natural Philosophy, vol. 17 (1969)Google Scholar
  33. 33.
    Gelfand, I.M.: Some problems in the theory of quasilinear equations. Amer. Math. Soc. Trans. 29, 295–381 (1963)MathSciNetGoogle Scholar
  34. 34.
    Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related problems via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Giovangigli, V.: Modélisation numérique de la chimie complexe. In: Berestycki, H., Brauner, C.-M., Clavin, P., Schidt-Lainé, C. (eds.) Images del Mathématiques, Modélisation de la Combustion. CNRS-France (1996)Google Scholar
  36. 36.
    Joulin, G., Vidal, P.: An introduction to instabilities of flames, shocks and detonations. In: Godréche, C., Manneville, P. (eds.) Hydrodynamics and Nonlinear Instabilities. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  37. 37.
    Joseph, D.D., Lundgrem, T.S.: Quasilinear Dirichlet problems driven by positive sources. Arch. Rat. Mech. Anal. 49, 241–269 (1973)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Kapila, A.: Reactive-diffusive systems with Arrhenius kinetics: dynamics of ignition. SIAM J. Appl. Math. 39, 21–36 (1980)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Kapila, A.: Asymptotic Treatment of Chemically Reacting Systems. Applied Mathematical Series PITMAN (1983)Google Scholar
  40. 40.
    Kassoy, D.R.: Extremely rapid transient phenomena in combustion, ignition and explosion. In: O’Malley, R.E. (ed.)Asymptotic Methods and Singular Perturbations, vol. X, SIAM-AMS Proceedings (1976)Google Scholar
  41. 41.
    Keller, H.B.: Some positone problems suggested by nonlinear heat generation. In: Keller, H.B., Altman, S. (eds.) Bifurcation Theory and Nonlinear Eigenvalue Problems, pp. 217–256. Benjamin, New York (1969)Google Scholar
  42. 42.
    Keener, J.P., Keller, H.B.: Positive solutions of convex nonlinear eigenvalue problems. J. Diff. Eq. 16, 103–125 (1974)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Kolmogorov, A.N., Petrovskii, I., Piscounoff, N.: Étude de l’equation de la diffision avec croissance de la quantité de matiére et son aplicatión a un probleme biologique. Bull. Univ. Moscow, Ser. Internac., Sec A I, pp. 1–25 (1937)Google Scholar
  44. 44.
    Krasnoselskii, M.A.: Topological Methods in the Theory of Nonlinear Integral Equation. Pergamon Press, New York (1964)Google Scholar
  45. 45.
    Lacey, A., Tzanetis, D.: Global unbounded solutions to a parabolic equation. J. Diff. Eq. 101, 80–102 (1993)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Leray, J.: Sur le mouvement d’un liquide visqueaux emplissant l’espace. Acta Mathematica 63, 193–248 (1934)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Liñán, A., Williams, F.: Fundamental Aspects of Combustion. In: The Oxford Engineering Science Series, vol. 33. Oxford University Press (1993)Google Scholar
  48. 48.
    Lions, P.-L.: Asymptotic behavior of some nonlinear heat equations. Physica 5D, 293–306 (1982)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Lions, P.-L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24(4), 441–467 (1982)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Liouville, J.: Sur l’equation aux dérivées parielles \( {\displaystyle \frac{\partial ^{2} ln \lambda }{\partial u \partial v} \pm 2 \, \lambda \, a^{2} = 0 } \). J. de Math. 18, 71–72 (1853)Google Scholar
  51. 51.
    Matano, H.: Asymptotic behaviour and stability of solution of semilinear diffusion equations. Publ. RIMS, Kyoto Univ. 15, 401–454 (1979)CrossRefGoogle Scholar
  52. 52.
    Murray, J.D.: Lectures on Nonlinear Differential Equations Models in Biology. Oxford University Press, Oxford (1978)Google Scholar
  53. 53.
    Ni, W.-M.: On the asymptotic behaviour of solutions of certain quasilinear parabolic equations. J. Diff. Eqs. 54, 97–120 (1984)CrossRefGoogle Scholar
  54. 54.
    Omón Arancibia, A.: On the stability for initial conditions for the parabolic Gelfand Problem. J. Math. Eng. 92(1), 167–184 (2015)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Omón Arancibia, A.: Steady and evolution perturbed Gelfand problems: some aspects on taking the limit (unpublished manuscript)Google Scholar
  56. 56.
    Parter, S.V.: Solutions of a differential equation arising in chemical reactor processes. SIAM J. Appl. Math. 26–4, 687–716 (1974)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Poore, A.: A model equation arising from chemical reactor theory Arch. Rat. Mech. Anal. 52–4, 358–388 (1973)CrossRefGoogle Scholar
  58. 58.
    Sattinger, D.H.: Monotone Methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Maths. J. 21(11), 979–1000 (1972)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Sattinger, D.H.: Topics in Stability and Bifurcaton Theory. Lectures Notes in Mathematics, vol. 309. Springer (1973)Google Scholar
  60. 60.
    Taira, K., Umezu, K.: Semilinear elliptic boundary-value problems in chemical reactor theory. J. Diff. Eqns. 142, 434–454 (1998)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Taira, K.: Semilinear elliptic boundary-value problems in combustion theory. Proc. Royal Soc. Edimburgh 132A, 1453–1476 (2002)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Uppal, A., Ray, W.H.: On the dynamic behavior of continuous stirred tank reactors. Chem. Eng. Sci. 29, 967–985 (1974)CrossRefGoogle Scholar
  63. 63.
    Volpert, A.I., Volpert, V., Volpert,V.A.: Traveling Waves for Parabolic Systems. American Math. Soc. (2000)Google Scholar
  64. 64.
    Wiebers, H.: S-shape bifurcation of nonlinear elliptic boundary value problems. Math. Ann. 270, 555–570 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería MatemáticaUniversidad de La FronteraTemucoChile

Personalised recommendations