Advertisement

Optimal Control Measures for Tuberculosis in a Population Affected with Insurgency

  • A. O. Egonmwan
  • D. OkuonghaeEmail author
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 200)

Abstract

In this chapter, optimal control theory is applied to a mathematical model describing the population dynamics of tuberculosis (TB) with variability in susceptibility due to difference in awareness level. Seeking to minimize the number of high-risk susceptible individuals with low level of TB awareness and to maximize the number of isolated actively-infected individuals placed under Directly Observed Treatment Short-Course (DOTS), we incorporated time-dependent control functions that represent educational campaign programs in the midst of insurgency, and case finding techniques for chronic TB cases, as they affect the dynamics of TB in a population. A particular case of the TB model without controls is presented and analyzed. Furthermore, the optimal controls are characterized in terms of the optimality systems, which are solved numerically for several scenarios using an iterative method with Runge-Kutta fourth order scheme. Numerical simulations were performed for various setting to illustrate the effect of the controls on the population dynamics of the disease in a given population.

Keywords

Tuberculosis Mathematical model Awareness campaign Case finding techniques Insurgency Optimal control theory Numerical simulations 

References

  1. 1.
    Agusto, F.B., Adekunle, A.I.: Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model. BioSystems 119, 20–44 (2014)CrossRefGoogle Scholar
  2. 2.
    Awosusi, A.E.: Aftermath of boko haram violence in the lake chad basin: a neglected global health threat. BMJ Glob. Health. 2(1), e000193 (2017).  https://doi.org/10.1136/bmjgh-2016-000193CrossRefGoogle Scholar
  3. 3.
    Borgdorff, M.W.: New measurable indicator for tuberculosis case detection. Emerg. Infect. Dis. 10(9), 1523–1528 (2004)CrossRefGoogle Scholar
  4. 4.
    Bowong, S., Alaoui, A.M.A.: Optimal intervention strategies for tuberculosis. Commun Nonlinear Sci Numer. Simulat 18, 1441–1453 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Checchi, F., Warsame, A., Treacy-Wong, V., et al.: Public health information in crises-affected populations: a review of methods and their use for advocacy and action. The Lancet (2017).  https://doi.org/10.1016/S0140-6736(17)30702-XCrossRefGoogle Scholar
  6. 6.
    Cohen, T., Colijn, C., Finklea, B., et al.: Exogenous re-infection and the dynamics of tuberculosis epidemics: local effects in a network model of transmission. J. R. Soc. Interface. 4(14), 523–531 (2007)CrossRefGoogle Scholar
  7. 7.
    Countrymeters, Population of Nigeria, Retrieved on 20th Novermber, 2018 from http://countrymeters.info/en/Nigeria (2018)
  8. 8.
    Denue, B.A., Gashau, W., Wuduri, Z.W., Stephen, M., et al.: Impact of insurgency on tuberculosis treatment uptake among TB patients in a tertiary health institution in Maiduguri. Northeast. Niger., Niger. Med. Pract. 70(1–2), 11–16 (2016)Google Scholar
  9. 9.
    Dye, C., Garnett, G.P., Sleeman, K., et al.: Prospects for worldwide tuberculosis control under the WHO DOTS strategy. Directly Obs. Short-Course Ther., Lancet 352(9144), 1886–91 (1998)Google Scholar
  10. 10.
    Egonmwan, A.O., Okuonghae, D.: Analysis of a mathematical model for tuberculosis with diagnosis. J. Appl. Math. Comput. https://doi.org/10.1007/s12190-018-1172-1
  11. 11.
    Emmanuelar, I.: Insurgency and humanitarian crises in Northern Nigeria: the case of Boko Haram. Afr. J. Polit. Sci. Int. Relat. 9(7), 284–296 (2015)CrossRefGoogle Scholar
  12. 12.
    Fatmawati, Tasman, H.: An optimal treatment control if TB-HIV coinfection. Int. J. Math. Math. Sci. Article ID 8261208 (1998)Google Scholar
  13. 13.
    Fister, K.R., Lenhart, S., McNally, J.S.: Optimizing chemotherapy in an HIV model. Electron. J. Diff. Equ. 32, 1–12 (1998)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer Verlag, New York (1975)CrossRefGoogle Scholar
  15. 15.
    Jung, E., Lenhart, S., Feng, Z.: Optimal control of treatment in a two-strain tuberculosis model. Discreet Cont Dyn-B 2(4), 473–482 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kimbrough, W., Saliba, V., Dahab, M., et al.: The burden of tuberculosis in crises-affected populations: a system review. Lancet Infect Dis. 12(12), 950–65 (2012).  https://doi.org/10.1016/S1473-3099(12)70225-6CrossRefGoogle Scholar
  17. 17.
    Kirschner, D., Lenhart, S., Serbin, S.: Optimal control of the chemotherapy of HIV. J. Math. Biol. 35, 775–792 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kuznetsov, V.N., Grjibovski, A.M., Mariandyshev, A.O., et al.: Two vicious circles contributing to a diagnostic delay for tuberculosis patients in Arkhangelsk. Emerg. Health Threat. J. 7, (2014)  https://doi.org/10.3402/ehtj.v7.24909
  19. 19.
    Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability analysis of nonlinear systems. SIAM Rev. 33(1), 152–154 (1991)CrossRefGoogle Scholar
  20. 20.
    Langer, A., Godefroidt, A., Meuleman, B.: Killing people, dividing a nation? Analyzing student perceptions of the Boko Haram crisis in Nigeria. Studies in Conflict & Terrorism (2016).  https://doi.org/10.1080/1057610X.2016.1214434
  21. 21.
    Lin, Y., Enarson, D.A., Chiang, C.Y., et al.: Patient delay in the diagnosis and treatment of tuberculosis in China: findings of case detection projects. The Union: Public Health Action 5(1), 65–69 (2015)Google Scholar
  22. 22.
    Loewenberg, S.: Famine fears in northeast Nigeria as Boko Haram fight rages. Lancent: World Report 2017; 389:352  https://doi.org/10.1016/S0140-6736(17)30198-8
  23. 23.
    Mesfin, M.M., Newell, J.N., Madeley, R.J., et al.: Cost implications of delays to tuberculosis diagnosis among pulmonary tuberculosis patients in Ethiopia. BMC Public Health 10(173) (2010)Google Scholar
  24. 24.
    MacQueen, G., Santa-Barbara, J.: Peace building through health initiatives. BMJ 321(7256):293–6Google Scholar
  25. 25.
    Makwakwa, L., Sheu, M.I., Chiang, C.Y., et al.: Patient and health system delays in the diagnosis and treatment of new and retreatment pulmonary tuberculosis cases in Malawi. BMC Infectious Diseases 14(132) (2014)Google Scholar
  26. 26.
    Moualeu, D.P., Weiser, M., Ehrig, R., et al.: Optimal control for tuberculosis model with undetected cases in Cameroon. Commun Nonlinear Sci Numer. Simulat 20, 986–1003 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Okuonghae, D., Aihie, V.: Case detection and direct observation therapy strategy (DOTS) in nigeria: its effect on TB dynamics. J. Biol. Syst. 16(1), 1–31 (2008)CrossRefGoogle Scholar
  28. 28.
    Okuonghae, D., Omosigho, S.E.: Determinants of TB case detection in Nigeria: a survey. Global J. Health Sci. 2, 123–28 (2010)CrossRefGoogle Scholar
  29. 29.
    Okuonghae, D., Omosigho, S.E.: Analysis of a mathematical model for tuberculosis: what could be done to increase case detection. J. Theor. Biol. 269(1), 31–45 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Okuonghae, D.: Lyapunov functions and global properties of some tuberculosis models. J. Appl. Math. Comput. (2014).  https://doi.org/10.1007/s12190-014-0811-4MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Okuonghae, D., Ikhimwin, B.O.: Dynamics of a mathematical model for tuberculosis with variability in susceptibility and disease progressions due to difference in awareness levelGoogle Scholar
  32. 32.
    Osman, A.: Boko haram and the islamic state: a tale of two terrors. Confl. Stud. Q. 18, 20–39 (2017)Google Scholar
  33. 33.
    Silva, C.J., Torres, D.F.M.: Optimal control for a tuberculosis model with reinfection and post-exposure interventions. Math. Biosci. 2013(244), 154–164 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Silva, C.J., Maurer, H., Torres, D.F.M.: Optimal control for a tuberculosis model with state and control delays. Math. Biosci. Eng. ISSN 1547-1063 (2016)Google Scholar
  35. 35.
    Smallman-Raynor, M.R., Cliff, A.D.: War Epidemics: A Historical Geography of Infectious Diseases in Military Conflicts and Civil Unrest. Oxford University Press Inc., New York (2004)Google Scholar
  36. 36.
    Song, B., Castillo-Chavez, C., Aparicio, J.P.: Tuberculosis models with fast and slow dynamics: the role of close and casual contacts. Math Biosci. 180, 187–205 (2002)MathSciNetCrossRefGoogle Scholar
  37. 37.
    TBFacts, TB in Nigeria - Funding, children, diagnosing TB, HIV/TB. Retrieved on 20th Novermber, 2018 from https://www.tbfacts.org/tb-nigeria/ (2018)
  38. 38.
    Pontryagrin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., et al.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)Google Scholar
  39. 39.
    Pullar, N.D., Steinum, H., Bruun, J.N., et al.: HIV patients with latent tuberculosis living in a low-endemic country do not develop active disease during a 2 year follow-up; a Norwegian prospective multicenter study. BMC Infect. Dis. 14, 667 (2014)CrossRefGoogle Scholar
  40. 40.
    Spiegel, P.B., Hering, H., Paik, E., et al.: Conflict-affected displaced persons need to benefit more from HIV and malaria national strategic plans and Global Funds grants. Confl Health 4, 2 (2010)CrossRefGoogle Scholar
  41. 41.
    United Nations Programme on HIV/AIDS (UNAIDS). Communications and Global Advocacy Fact Sheet, UNAIDS (2014)Google Scholar
  42. 42.
    Uys, P., Brand, H., Warren, R., et al.: The risk of tuberculosis reinfection soon after cure of a first disease episode is extremely high in a hyperendemic community. PLoS ONE 10(12), e0144487 (2015)CrossRefGoogle Scholar
  43. 43.
    van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)Google Scholar
  44. 44.
    Verhagen, L.M., Kapinga, R., van Rosmalen-Nooijens, K.A.W.L.: Factors underlying diagnostic delay in tuberculosis patients in a rural area in Tanzania: a qualitative approach. Clin. Epidemiol. Study: Infect. 38, 433–446 (2010)Google Scholar
  45. 45.
    Verver, S., Warren, R.M., Beyers, N., et al.: Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am. J. Respir. Crit. Care. Med. 171(12), 1430–5 (2005)CrossRefGoogle Scholar
  46. 46.
    World Health Organization (WHO): World Report on Violence and Health. Geneva (2002)Google Scholar
  47. 47.
    World Health Organization (WHO): Global Tuberculosis Report 2014. WHO Report (2014)Google Scholar
  48. 48.
    World Health Organization (WHO): Global Tuberculosis report 2015. WHO/HTM/TB/2016.22Google Scholar
  49. 49.
    World Health Organization (WHO): Global Tuberculosis Report 2016. WHO/HTM/TB/2016.13Google Scholar
  50. 50.
    World Health Organization (WHO): Global Tuberculosis Report 2017, WHO/HTM/TB/2017.23Google Scholar
  51. 51.
    World Health Organization (WHO): Global Tuberculosis Report 2018. WHO/CDS/TB/2018.25Google Scholar
  52. 52.
    Yang, W.T., Gounder, C.R., Akande, T., et al.: Barriers and Delays in Tuberculosis Diagnosis and Treatment Services: Does Gender Matter? Tuberc. Res. Treat. (2014).  https://doi.org/10.1155/2014/461935

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BeninBenin CityNigeria

Personalised recommendations