Advertisement

Numerical Techniques for Fractional Competition Dynamics with Power-, Exponential- and Mittag-Leffler Laws

  • Kolade M. OwolabiEmail author
  • Hemen Dutta
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 200)

Abstract

This chapter deals with modelling and analysis fractional competition system with power law, exponential law and the Mittag-leffler law in which the standard derivative in time is replaced with the Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. A fractional version of the Adams-Bashforth scheme is formulated for the approximation of these derivatives. To justify the applicability and suitability of these derivatives, we drawn comparison by applying them to solve some problems for specific value of fractional power \(\alpha \). In the simulation framework, we consider a number of fractional competition dynamics arising in applied areas of engineering and science.

Keywords

Atangana-Baleanu derivative Fractional Adams-Bashforth-Moulton methods Fractional order competition dynamics Numerical simulations Stability analysis 

2010 Mathematics Subject Classification:

34A34 35A05 35K57 65L05 65M06 93C10 

References

  1. 1.
    Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Allen, L.J.S.: An Introduction to Mathematical Biology. Pearson Education Inc., New Jersey (2007)Google Scholar
  3. 3.
    Almeida, R., Bastos, N., Teresa, M., Monteiro, T.: A prelude to the fractional calculus applied to tumor dynamic. Math. Methods Appl. Sci. 39, 4846–4855 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ameen, I., Novati, P.: The solution of fractional order epidemic model by implicit Adams methods. Appl. Math. Model. 43, 78–84 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)CrossRefGoogle Scholar
  6. 6.
    Atangana, A., Owolabi, K.M.: New numerical approach for fractional differential equations. Math. Model. Nat. Phenom. 13(3), 1–21 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Atangana, A.: Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties. Phys. A 505, 688–706 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Atangana, A.: Blind in a commutative world: simple illustrations with functions and chaotic attractors. Chaos Solitons Fractals 114, 347–363 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Atangana, A., Jain, S.: The role of power decay, exponential decay and Mittag-Leffler function’s waiting time distribution: application of cancer spread. Phys. A 512, 330–351 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Berec, L., Janousková, E., Theuer, M.: Sexually transmitted infections and mate-finding Allee effects. Theor. Popul. Biol. 114, 59–69 (2017)CrossRefGoogle Scholar
  11. 11.
    Berryman, A.A.: Population Systems: A General Introduction. Plenum Press, New York (1981)CrossRefGoogle Scholar
  12. 12.
    Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Differ. Appl. 1, 73–85 (2015)Google Scholar
  13. 13.
    Coronel-Escamilla, A., Gómez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Guerrero-Ramírez, G.V.: Triple pendulum model involving fractional derivatives with different kernels. Chaos Solitons Fractals 90, 248–261 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Demirci, E., Ozalp, N.: A method for solving differential equations of fractional order. J. Comput. Appl. Math. 236, 2754–2762 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Baleanu, D., Reyes, J.M., Sosa, I.O.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equ. 2016, 1–17 (2016)CrossRefGoogle Scholar
  17. 17.
    Gómez-Aguilar, J.F., Yépez-Martínez, H., Escobar-Jiménez, R.F., Astorga-Zaragoza, C.M., Reyes-Reyes, J.: Analytical and numerical solutions of electrical circuits described by fractional derivatives. Appl. Math. Model. 40, 9079–9094 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kandler, A.: Demography and language competition. Hum. Biol. 81(2) (2009) (Article 5)Google Scholar
  19. 19.
    Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, United Kingdom (2001)CrossRefGoogle Scholar
  20. 20.
    Li, C.P., Tao, C.X.: On the fractional Adams method. Comput. Math. Appl. 58, 1573–1588 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Morales-Delgado, V.F., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132, 1–17 (2017)CrossRefGoogle Scholar
  22. 22.
    Murray, J.D.: Mathematical Biology I: An Introduction. Springer, New York (2002)zbMATHGoogle Scholar
  23. 23.
    Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, Berlin (2003)zbMATHGoogle Scholar
  24. 24.
    Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Publication, New York (2006)zbMATHGoogle Scholar
  25. 25.
    Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, New York (2011)CrossRefGoogle Scholar
  26. 26.
    Owolabi, K.M., Patidar, K.C.: Numerical simulations of multicomponent ecological models with adaptive methods. Theor. Biol. Med. Model. 13(1), 25 (2016).  https://doi.org/10.1186/s12976-016-0027-4CrossRefGoogle Scholar
  27. 27.
    Owolabi, K.M.: Efficient Numerical Methods for Reaction-Diffusion Problems. LAP Academic Publishing, Germany (2016)Google Scholar
  28. 28.
    Owolabi, K.M., Atangana, A.: Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative. Chaos Solitons Fractals 105, 111–119 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 44, 304–317 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Owolabi, K.M.: Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann-Liouville derivative. Numer. Methods Partial Differ. Equ. 34, 274–295 (2018).  https://doi.org/10.1002/num.22197MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Owolabi, K.M., Atangana, A.: Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations. Chaos Solitons Fractals 111, 119–127 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Owolabi, K.M.: Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative. Eur. Phys. J. Plus 133, 15 (2018).  https://doi.org/10.1140/epjp/i2018-11863-9CrossRefGoogle Scholar
  33. 33.
    Owolabi, K.M.: Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator. Eur. Phys. J. Plus 133, 98 (2018).  https://doi.org/10.1140/epjp/i2018-11951-xCrossRefGoogle Scholar
  34. 34.
    Owolabi, K.M., Atangana, A.: Chaotic behaviour in system of noninteger-order ordinary differential equations. Chaos Solitons Fractals 115, 362–370 (2018).  https://doi.org/10.1016/j.chaos.2018.07.034MathSciNetCrossRefGoogle Scholar
  35. 35.
    Otero-Espinar, M.V., Seoane, L.F., Nieto, J.J., Mira, J.: An analytic solution of a model of language competition with bilingualism and interlinguistic similarity. Phys. D 264, 17–26 (2013)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Patriarca, M., Heinsalu, E.: Influence of geography on language competition. Phys. A 388, 174–186 (2009)CrossRefGoogle Scholar
  37. 37.
    Petrás, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)CrossRefGoogle Scholar
  38. 38.
    Pindza, E., Owolabi, K.M.: Fourier spectral method for higher order space fractional reaction-diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 40, 112–128 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)zbMATHGoogle Scholar
  40. 40.
    Ravi Kanth, A.S.R.V., Garg, N.: Computational simulations for solving a class of fractional models via Caputo-Fabrizio fractional derivative. Procedia Comput. Sci. 125, 476–482 (2018)CrossRefGoogle Scholar
  41. 41.
    Saberi Nik, H., Van Gorder, R.A., Gambino, G.: The chaotic Dadras-Momeni system: control and hyperchaotification. IMA J. Math. Control Inf. 33, 497–518 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Natural and Agricultural Sciences, Institute for Groundwater StudiesUniversity of the Free StateBloemfonteinSouth Africa
  2. 2.Department of Mathematical SciencesFederal University of TechnologyAkureNigeria
  3. 3.Department of MathematicsGauhati UniversityGuwahatiIndia

Personalised recommendations