Advertisement

On the Reynolds Equation and the Load Problem in Lubrication: Literature Review and Mathematical Modelling

  • Hassán Lombera Rodríguez
  • J. Ignacio TelloEmail author
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 200)

Abstract

In this chapter, we provide a literature review concerning the theory of hydrodynamic lubrication, especially applied to journal bearings. The device consists of an external cylinder surrounding a rotating shaft, both separated by a lubricant to prevent contact. In particular, we derive the fluid film thickness model for journal bearings, considering both the parallel and the misaligned case. The hydrodynamic Reynolds equation with cavitation phenomenon, through both Reynolds and Elrod-Adams models are fully derived in this chapter. Subsequently, we pose two suitable variational formulations for the hydrodynamic problem considering both cavitation models. In addition, we present the admissible range of misalignment angle projections for prescribed values of the shaft eccentricity and angular coordinate. Finally, we properly state the problem of a loaded misaligned journal bearing for stationary regime, considering the balance of force and torque components involved.

Keywords

Reynolds equation Hydrodynamic lubrication Journal bearing Misalignment Cavitation Inverse problem 

References

  1. 1.
    Abass, B.A., Sahib, M.M.: Effect of bearing compliance on thermo-hydrodynamic lubrication of high speed misaligned journal bearing lubricated with bubbly oil. Ind. Eng. Lett 3, 48–60 (2013)Google Scholar
  2. 2.
    Álvarez, S.J.: Problemas de frontera libre en teoría de lubrificación. Ph.D. thesis. Universidad Complutense de Madrid (1986)Google Scholar
  3. 3.
    Asanabe, S., Akakoski, M., Asai, R.: Theoretical and experimental investigation on misaligned journal bearing performance. Ind. Lubr. Tribol. 23(6), 208 (1971)Google Scholar
  4. 4.
    Bayada, G., Chambat, M.: Sur quelques modélizations de la zone de cavitation en lubrification hydrodynamique. J. Theor. Appl. Mech. 5(5), 703–729 (1986)zbMATHGoogle Scholar
  5. 5.
    Bayada, G., Chambat, M.: The transition between the Stokes equation and the Reynolds equation: a mathematical proof. Appl. Math. Opt. 14(1), 73–93 (1986)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bayada, G., Chambat, M., Vázquez, C.: Characteristics method for the formulation and computation of a free boundary cavitation problem. J. Comput. Appl. Math. 98(2), 191–212 (1998)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bayada, G., Martin, S., Vázquez, C.: An average flow model of the Reynolds roughness including a mass-flow preserving cavitation model. J. Tribol-T. ASME. 127(4), 793–802 (2005)Google Scholar
  8. 8.
    Bayada, G., Martin, S., Vázquez, C.: Homogenization of a nonlocal elastohydrodynamic lubrication problem: a new free boundary model. Math. Mod. Meth. Appl. S. 15(12), 1923–1956 (2005)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bayada, G., Martin, S., Vázquez, C.: Homogneisation du modèle d’Elrod-Adams hydrodynamique. Asymptotic. Anal. 44, 75–110 (2005)MathSciNetGoogle Scholar
  10. 10.
    Bayada, G., Martin, S., Vázquez, C.: Two-scale homogenization of a hydrodynamic Elrod-Adams model. Asymptotic. Anal. (2005)Google Scholar
  11. 11.
    Bayada, G., Martin, S., Vázquez, C.: Micro-roughness effects in (elasto) hydrodynamic lubrication including a mass-flow preserving cavitation model. Tribol. Int. 39(12), 1707–1718 (2006)Google Scholar
  12. 12.
    Bayada, G., Vázquez, C.: A survey on mathematical aspects of lubrication problems. Boletín SeMA 39, 37–74 (2007)zbMATHGoogle Scholar
  13. 13.
    Bermúdez, A., Durany, J.: Numerical solution of cavitation problems in lubrication. Comput. Methods Appl. Mech. Eng. 75, 455–466 (1989)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bermúdez, A., Moreno, C.: Duality methods for solving variational inequalities. Comp. Math. Appl. 7, 43–58 (1981)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Blum, C., Vallès, M.Y., Blesa, M.J.: An ant colony optimization algorithm for DNA sequencing by hybridization. Comput. Oper. Res. 35(11), 3620–3635 (2008)zbMATHGoogle Scholar
  16. 16.
    Boedo, S., Booker, J.F.: Classical bearing misalignment and edge loading: a numerical study of limiting cases. J. Tribol-T. ASME. 126(3), 535–541 (2004)Google Scholar
  17. 17.
    Boucherit, H., Lahmar, M., Bou-Said, B.: Misalignment effects on steady-state and dynamic behaviour of compliant journal bearings lubricated with couple stress fluids. Lubr. Sci. 20(3), 241–268 (2008)Google Scholar
  18. 18.
    Bouyer, J., Fillon, M.: An experimental analysis of misalignment effects on hydrodynamic plain journal bearing performances. J. Tribol. 124(2), 313–319 (2002)Google Scholar
  19. 19.
    Bouyer, J., Fillon, M.: Improvement of the THD performance of a misaligned plain journal bearing. J. Tribol. 125(2), 334–342 (2003)Google Scholar
  20. 20.
    Brito, F.P.: Thermohydrodynamic performance of twin groove journal bearings considering realistic lubricant supply conditions: a theoretical and experimental study. Ph.D. thesis. Universidade do Minho (2009)Google Scholar
  21. 21.
    Calvo, N., Durany, J., Vázquez, C.: Comparación de algoritmos numéricos en problemas de lubricación hidrodinámica con cavitación en dimensión uno. Rev. Int. Metod. Numer. 13(2), 185–209 (1997)Google Scholar
  22. 22.
    Capriz, G., Cimatti, G.: Free boundary problems in the theory of hydrodynamic lubrication: a survey. In: Fasano, A., Primicerio, M. (eds.) Free Boundary Problems: Theory and Applications, vol. 2. Research Notes in Mathematics 79. Pitman, pp. 613–635 (1983)Google Scholar
  23. 23.
    Chelouah, R., Siarry, P.: Enhanced continuous tabu search: an algorithm for optimizing multiminima functions. In: Meta-Heuristics. Advances and Trends in Local Search Paradigms for Optimization (Chap. 4), pp. 49–61. Springer, Berlin (1999)Google Scholar
  24. 24.
    Chelouah, Rachid, Siarry, Patrick: A continuous genetic algorithm designed for the global optimization of multimodal functions. J. Heuristics 6(2), 191–213 (2000)zbMATHGoogle Scholar
  25. 25.
    Christopherson, D.G.: A new mathematical method for the solution of film lubrication problems. Inst. Mech. Engrs. J. Proc. 146, 126–135 (1941)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Cimatti, G.: On certain nonlinear problems arising in the theory of lubrication. Appl. Math. Opt. 11(1), 227–245 (1984)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Cimatti, G.: Existence and uniqueness for nonlinear Reynolds equations. Int. J. Eng. Sci. 24(5), 827–834 (1986)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ciuperca, I.S., Hafidi, I., Jai, M.: Singular perturbation problem for the incompressible Reynolds equation. Electr. J. Differ. Equ. 2006(83), 1–19 (2006)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ciuperca, I.S., Jai, M., Tello, J.I.: On the existence of solutions of equilibria in lubricated journal bearings. SIAM J. Math. Anal. 40(6), 2316–2327 (2009)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ciuperca, I.S., Jai, M., Tello, J.I.: Equilibrium analysis for a mass-conserving model in presence of cavitation. Nonlinear Anal.: R. World Appl. 35, 250–264 (2017)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Ciuperca, I.S., Tello, J.I.: Lack of contact in a lubricated system. Q. Appl. Math. 69(2), 357–378 (2011a)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Ciuperca, I.S., Tello, J.I.: On a variational inequality on elasto-hydrodynamic lubrication. J. Math. Anal. Appl. 383(2), 597–607 (2011b)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Cryer, C.W.: The method of Christopherson for solving free boundary problems for infinite journal bearings by means of finite differences. Math. Comput. 25(115), 435–443 (1971)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Cuvelier, C.: A free boundary problem in hydrodynamic lubrication including surface tension. In: Cabannes, H., Holt, M., Rusanov, V. (eds.) Sixth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol. 90, pp. 143–148. Springer, Berlin (1979)Google Scholar
  35. 35.
    Das, S., Guha, S.K., Chattopadhyay, A.K.: On the steady-state performance of misaligned hydrodynamic journal bearings lubricated with micropolar fluids. Tribol. Int. 35(4), 201–210 (2002)Google Scholar
  36. 36.
    Díaz, J.I., Tello, J.I.: A note on some inverse problems arising in lubrication theory. Differ. Integral. Equ. 17, 583–592 (2004)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Díaz, M., Lombera, H., et al.: An approach for assembly sequence planning based on MAX-MIN Ant System. IEEE Latin Am. Trans. 13(4), 907–912 (2015)Google Scholar
  38. 38.
    Dorigo, M.: Optimization, learning and natural algorithms. Italian. Ph.D. thesis. Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy (1992)Google Scholar
  39. 39.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41 (1996)Google Scholar
  40. 40.
    Dowson, D.: A generalized Reynolds equation for fluid film lubrication. Int. J. Mech. Sci. 4, 159–170 (1962)Google Scholar
  41. 41.
    Dubois, G.B., Mabie, H.H., Ocvirk, F.W.: Experimental investigation of oil film pressure distribution for misaligned plain bearings. Technical Report. National Advisory Committee for Aeronautics, KittyHawk, NC, USA (1951)Google Scholar
  42. 42.
    Durany, J., García, G., Vázquez, C.: Numerical simulation of a lubricated hertzian contact problem under imposed load. Finite. Elem. Anal. Des. 38(7), 645–658 (2002)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Durany, J., Pereira, J., Varas, F.: Numerical solution to steady and transient problems in thermohydrodynamic lubrication using a combination of finite element, finite volume and boundary element methods. Finite. Elem. Anal. Des. 44(11), 686–695 (2008)MathSciNetGoogle Scholar
  44. 44.
    Durany, J., Pereira, J., Varas, F.: Dynamical stability of journal-bearing devices through numerical simulation of thermohydrodynamic models. Tribol. Int. 43, 1703–1718 (2010)Google Scholar
  45. 45.
    Durany, J., Vázquez, C.: Numerical approach of lubrication problems in journal bearing devices with axial supply. Numer. Methods Eng. 92, 839–844 (1992)Google Scholar
  46. 46.
    El Alaoui Talibi, M., Bayada, G.: Une méthode du type caractéristique pour la résolution d’un problème de lubrification hydrodynamique en régime transitoire. ESAIM-Math. Model. Num. 25(4), 395–423 (1991)zbMATHGoogle Scholar
  47. 47.
    Elrod, H.G., Adams, M.L.: A computer program for cavitation and starvation problems. Cavitation and related phenomena in lubrication: proceedings of the 1st Leeds-Lyon Symposium on Tribology. Mech. Eng. Publ. pp. 37–42 (1975)Google Scholar
  48. 48.
    Frêne, J., Nicolas, D., et al.: Hydrodynamic Lubrication: Bearings and Thrust Bearings, vol. 33. Elsevier, Amsterdam (1997)zbMATHGoogle Scholar
  49. 49.
    Gambardella, L.M., Taillard, É., Agazzi, G.: MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization (Chap. 5), pp. 63–76. McGraw-Hill, London (1999)Google Scholar
  50. 50.
    Garcia-Najera, A., Bullinaria, J.A.: Extending ACOR to solve multi-objective problems. In: Proceedings of the UK Workshop on Computational Intelligence, London (2007)Google Scholar
  51. 51.
    Gómez-Mancilla, J., Nosov, V.: Short journal bearing with misaligned axes. In: Proceedings 1st International Symposium on Control of Rotating Machinery (2001)Google Scholar
  52. 52.
    Gómez-Mancilla, J., Nosov, V.: Perturbed pressure field solution for misaligned short journal bearings. In: Proceedings 9th International Symposium on Transport Phenomena and Rotating Machinery. ISROMAC-9, Hawaii, EU (2002)Google Scholar
  53. 53.
    Guha, S.K.: Analysis of steady-state characteristics of misaligned hydrodynamic journal bearings with isotropic roughness effect. Tribol. Int. 33(1), 1–12 (2000)MathSciNetGoogle Scholar
  54. 54.
    He, Z., Zhang, J., et al.: Misalignment analysis of journal bearing influenced by asymmetric deflection, based on a simple stepped shaft model. J. Zhejiang Univ. Sci. A 13(9), 647–664 (2012)Google Scholar
  55. 55.
    Jang, J.Y., Khonsari, M.M.: Design of bearings on the basis of thermohydrodynamic analysis. In: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 218, No. 5, pp. 355–363. Sage, Beverley Hills (2004)Google Scholar
  56. 56.
    Jang, J.Y., Khonsari, M.M.: On the characteristics of misaligned journal bearings. Lubricants 3(1), 27–53 (2015)Google Scholar
  57. 57.
    Jang, J.Y., Khonsari, M.M., Bair, S.: On the elastohydrodynamic analysis of shear-thinning fluids. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 463, No. 2088, pp. 3271–3290. The Royal Society (2007)Google Scholar
  58. 58.
    Khonsari, M.M., Booser, E.R.: Applied Tribology: Bearing Design and Lubrication, 2nd edn. Wiley, New York (2008). ISBN: 978-0-470-05711-7Google Scholar
  59. 59.
    Kumar, P., Khonsari, M.M.: Traction in EHL line contacts using free-volume pressureviscosity relationship with thermal and shear-thinning effects. J. Tribol. 131(1), 011503 (2009)Google Scholar
  60. 60.
    Leguizamón, G., Coello, C.A.: A study of the scalability of ACOR for continuous optimization problems. Technical report, The Evolutionary Computation Group at CINVESTAV-IPN (2010)Google Scholar
  61. 61.
    Leguizamón, G., Coello, C.A.: An alternative ACOR algorithm for continuous optimization problems. In: Swarm Intelligence: 7th International Conference, ANTS 2010, vol. 6234, pp. 48–59. Lecture Notes in Computer Science, Brussels, Belgium. Springer, Berlin (2010)Google Scholar
  62. 62.
    Liao, T.: Improved ant colony optimization algorithms for continuous and mixed discrete continuous optimization problems. MA thesis. Université Libre de Bruxelles, Belgium (2011)Google Scholar
  63. 63.
    Liao, T., Montes de Oca, M.A., et al.: An incremental ant colony algorithm with local search for continuous optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 125–132. ACM, New York (2011)Google Scholar
  64. 64.
    Liao, T., Stützle, T., et al.: A unified ant colony optimization algorithm for continuous optimization. Euro. J. Oper. Res. 234(3), 597–609 (2014)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Liñan, A.: Curso de Mecánica de Fluidos. Technical Report, Universidad Politécnica de Madrid (1999)Google Scholar
  66. 66.
    Liu, G.: Dual variational principles for the free-boundary problem of cavitated bearing lubrication. In: Gao, D.Y. (ed.) Complementarity, Duality and Symmetry in Nonlinear Mechanics: Proceedings of the IUTAM Symposium, vol. 6, pp. 179–189. Springer Science & Business Media (2004)Google Scholar
  67. 67.
    Lombera, H., Tello, J.I.: A numerical approach to solve an inverse problem in lubrication theory. RACSAM. Rev. R. Acad. A. 108(2), 617–631 (2014)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Martin, S.: Influence of multiscale roughness patterns in cavitated flows: applications to journal bearings. Math. Probl. Eng. 2008, 1–26 (2008)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Maru, M.M., Tanaka, D.K.: Consideration of stribeck diagram parameters in the investigation on wear and friction behavior in lubricated sliding. J. Braz. Soc. Mech. Sci. Eng. 29(1), 55–62 (2007)Google Scholar
  70. 70.
    McKee, S.A., McKee, T.R.: Pressure distribution in oil films of journal bearings. ASME 54, 149–165 (1932)Google Scholar
  71. 71.
    Nikolakopoulos, P.G., Papadopoulos, C.A.: Non-linearities in misaligned journal bearings. Tribol. Int. 27(4), 243–257 (1994)Google Scholar
  72. 72.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Science + Business Media, LLC, Berlin (2006)zbMATHGoogle Scholar
  73. 73.
    Ocvirk, F.W., DuBois, G.B.: Analytical derivation and experimental evaluation of shortbearing approximation for full journal bearings. Technical Report 1157. NACA (1953)Google Scholar
  74. 74.
    Osman, T.A.: Misalignment effect on the static characteristics of magnetized journal bearing lubricated with ferrofluid. Tribol. Lett. 11(3–4), 195–203 (2001)Google Scholar
  75. 75.
    Pedraza, G., Díaz, M., Lombera, H.: An approach for assembly sequence planning by genetic algorithms. IEEE Latin Am. Trans. 14(5), 2066–2071 (2016)Google Scholar
  76. 76.
    Pierre, I., Bouyer, J., Fillon, M.: Thermohydrodynamic study of misaligned plain journal bearings-comparison between experimental data and theoretical results. Appl. Mech. Eng. 7(3), 949–960 (2002)Google Scholar
  77. 77.
    Pierre, I., de France, E., et al.: Thermohydrodynamic behavior of misaligned plain journal bearings: theoretical and experimental approaches. Tribol. Trans. 47(4), 594–604 (2004)Google Scholar
  78. 78.
    Piggott, R.J.S.: Bearings and lubrication. Bearing troubles traceable to design can be avoided by engineering study. Mech. Eng. 64, 259 (1942)Google Scholar
  79. 79.
    Piniganti, L.: A Survey of Tabu search in combinatorial optimization. MA thesis. University of Nevada, Las Vegas (2014)Google Scholar
  80. 80.
    Pinkus, O., Bupara, S.S.: Analysis of misaligned grooved journal bearings. J. Tribol. 101(4), 503–509 (1979)Google Scholar
  81. 81.
    Pinkus, O., Sternlicht, B.: Theory of Hydrodynamic Lubrication. McGraw-Hill, New York (1961)zbMATHGoogle Scholar
  82. 82.
    Reynolds, O.: On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. Roy. Soc. A 117, 157–234 (1886)zbMATHGoogle Scholar
  83. 83.
    Rodrigues, J.F.: Remarks on the Reynolds problem of elastohydrodynamic lubrication. Eur. J. Appl. Math. 4(01), 83–96 (1993)MathSciNetzbMATHGoogle Scholar
  84. 84.
    Rohde, S.M., McAllister, G.T.: A variational formulation for a class of free boundary problems arising in hydrodynamic lubrication. Int. J. Eng. Sci. 13(9–10), 841–850 (1975)zbMATHGoogle Scholar
  85. 85.
    Sharma, S.C., Jain, S.C., Nagaraju, T.: Combined influence of journal misalignment and surface roughness on the performance of an orifice compensated non-recessed hybrid journal bearing. Tribol. Trans. 45(4), 457–463 (2002)Google Scholar
  86. 86.
    Siarry, Patrick, Berthiau, Gérard, et al.: Enhanced simulated annealing for globally minimizing functions of many-continuous variables. ACM Trans. Math. Softw. (TOMS) 23(2), 209–228 (1997)MathSciNetzbMATHGoogle Scholar
  87. 87.
    Socha, K.: Ant colony optimization for continuous and mixed-variable domains. PhD thesis. Université Libre de Bruxelles, Belgium (2008)Google Scholar
  88. 88.
    Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Euro. J. Oper. Res. 185(3), 1155–1173 (2008)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Srinivas, M., Patnaik, L.M.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994)Google Scholar
  90. 90.
    Stachowiak, G., Batchelor, A.W.: Engineering Tribology. Butterworth-Heinemann, Oxford (2013)Google Scholar
  91. 91.
    Stieber, W.: Das Schwimmlager. Technical Report Ver. Dtsch. Ing. Berlin (1933)Google Scholar
  92. 92.
    Stützle, T., Hoos, H.: MAX-MIN Ant System. Futur. Gener. Comput. Syst. 16(8), 889–914 (2000)zbMATHGoogle Scholar
  93. 93.
    Sun, J., Deng, M., et al.: Thermohydrodynamic lubrication. Analysis of misaligned plain journal bearing with rough surface. J. Tribol. 132(1), 011704 (2010)Google Scholar
  94. 94.
    Sun, J., Zhu, X., et al.: Effect of surface roughness, viscosity-pressure relationship and elastic deformation on lubrication performance of misaligned journal bearings. Ind. Lubr. Tribol. 66(3), 337–345 (2014)Google Scholar
  95. 95.
    Swift, H.W.: The stability of lubricating films in journal bearings. J. Inst. Civ. Eng. 233(Part 1), 267–288 (1932)Google Scholar
  96. 96.
    Thomsen, K., Klit, P.: Improvement of journal bearing operation at heavy misalignment using bearing flexibility and compliant liners. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 226(8), 651–660 (2012)Google Scholar
  97. 97.
    Vijayaraghavan, D., Keith, T.G.: Effect of cavitation on the performance of a grooved misaligned journal bearing. Wear 134(2), 377–397 (1989)Google Scholar
  98. 98.
    Vijayaraghavan, D., Keith, T.G.: Analysis of a finite grooved misaligned journal bearing considering cavitation and starvation effects. J. Tribol-T. ASME. 112(1), 60–67 (1990)Google Scholar
  99. 99.
    Xu, G., Zhou, J., et al.: Research on the static and dynamic characteristics of misaligned journal bearing considering the turbulent and thermohydrodynamic effects. J. Tribol. 137(2), 024504 (2015)Google Scholar
  100. 100.
    Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl. Eng. 2015 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Informática IndustrialUniversidad de las Ciencias InformáticasLa HabanaCuba
  2. 2.Depto Matemática Aplicada a las TIC. ETSIS Sistemas Informáticos, UPMMadridSpain

Personalised recommendations