Advertisement

Image Retrieval and Classification in Relational Databases

  • Rafał SchererEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 821)

Abstract

Relational databases are used to store information in every kind of life and business. They are suited for storing structured data and binary large objects (BLOBs). Unfortunately, BLOBs and multimedia data are difficult to handle, index, query and retrieve. Usually, relational database management systems are not equipped with tools to retrieve multimedia by their content.

References

  1. 1.
    Araujo, M.R., Traina, A.J., Traina C., Jr.: Extending SQL to support image content-based retrieval. In: ISDB, pp. 19–24 (2002)Google Scholar
  2. 2.
    Bradski, G.: The opencv library. Dr. Dobbs J. 25(11), 120–126 (2000)Google Scholar
  3. 3.
    Chaudhuri, S., Narasayya, V.R.: An efficient, cost-driven index selection tool for microsoft SQL server. VLDB 97, 146–155 (1997)Google Scholar
  4. 4.
    Dubois, D., Prade, H., Sedes, F.: Fuzzy logic techniques in multimedia database querying: a preliminary investigation of the potentials. IEEE Trans. Knowl. Data Eng. 13(3), 383–392 (2001).  https://doi.org/10.1109/69.929896CrossRefGoogle Scholar
  5. 5.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)CrossRefGoogle Scholar
  6. 6.
    Fielding, R.T.: Architectural styles and the design of network-based software architectures. Ph.D. thesis, University of California, Irvine (2000)Google Scholar
  7. 7.
    Grauman, K., Darrell, T.: Efficient image matching with distributions of local invariant features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pp. 627–634 (2005).  https://doi.org/10.1109/CVPR.2005.138
  8. 8.
    Kacprzyk, J., Zadrozny, S.: Fuzzy queries in microsoft access v. 2. In: Proceedings of the FUZZ-IEEE/IFES’95 Workshop on Fuzzy Database Systems and Information Retrieval (1995)Google Scholar
  9. 9.
    Kacprzyk, J., Zadrozny, S.: On combining intelligent querying and data mining using fuzzy logic concepts. In: Recent Issues on Fuzzy Databases, pp. 67–81. Springer (2000)Google Scholar
  10. 10.
    Korytkowski, M.: Novel visual information indexing in relational databases. Integr. Comput. Aided Eng. 24(2), 119–128 (2017)CrossRefGoogle Scholar
  11. 11.
    Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016).  https://doi.org/10.1016/j.ins.2015.08.030. http://www.sciencedirect.com/science/article/pii/S0020025515006180MathSciNetCrossRefGoogle Scholar
  12. 12.
    Korytkowski, M., Scherer, R., Staszewski, P., Woldan, P.: Bag-of-features image indexing and classification in microsoft sql server relational database. In: 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), pp. 478–482 (2015).  https://doi.org/10.1109/CYBConf.2015.7175981
  13. 13.
    Larson, P.Å., Clinciu, C., Hanson, E.N., Oks, A., Price, S.L., Rangarajan, S., Surna, A., Zhou, Q.: SQL server column store indexes. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp. 1177–1184. ACM (2011)Google Scholar
  14. 14.
    Liu, J.: Image retrieval based on bag-of-words model (2013). arXiv:1304.5168
  15. 15.
    Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recognit. 40(1), 262–282 (2007)CrossRefGoogle Scholar
  16. 16.
    Meskaldji, K., Boucherkha, S., Chikhi, S.: Color quantization and its impact on color histogram based image retrieval accuracy. In: First International Conference on Networked Digital Technologies, 2009. NDT’09, pp. 515–517 (2009).  https://doi.org/10.1109/NDT.2009.5272135
  17. 17.
    Müller, H., Geissbuhler, A., Marchand-Maillet, S.: Extensions to the multimedia retrieval markup language–a communication protocol for content–based image retrieval. In: European Conference on Content-based Multimedia Indexing (CBMI03). Citeseer (2003)Google Scholar
  18. 18.
    Ogle, V.E., Stonebraker, M.: Chabot: retrieval from a relational database of images. Computer 9, 40–48 (1995)CrossRefGoogle Scholar
  19. 19.
    Pein, R.P., Lu, J., Renz, W.: An extensible query language for content based image retrieval based on Lucene. In: 8th IEEE International Conference on Computer and Information Technology, 2008. CIT 2008, pp. 179–184. IEEE (2008)Google Scholar
  20. 20.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, pp. 1–8 (2007)Google Scholar
  21. 21.
    Rivest, R.: The MD5 Message-Digest Algorithm. RFC Editor, United States (1992)Google Scholar
  22. 22.
    Rutkowski, L.: Computational Intelligence Methods and Techniques. Springer, Berlin (2008)CrossRefGoogle Scholar
  23. 23.
    Scherer, R.: Multiple Fuzzy Classification Systems. Springer (2012)Google Scholar
  24. 24.
    Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, vol. 2, pp. 1470–1477 (2003)Google Scholar
  25. 25.
    Srinivasan, J., De Fazio, S., Nori, A., Das, S., Freiwald, C., Banerjee, J.: Index with entries that store the key of a row and all non-key values of the row (2000). US Patent 6,128,610Google Scholar
  26. 26.
    Staszewski, P., Woldan, P., Korytkowski, M., Scherer, R., Wang, L.: Artificial Intelligence and Soft Computing: 15th International Conference, ICAISC 2016, Zakopane, Poland, June 12–16, (2016) (Proceedings, Part II, chap. Query-by-Example Image Retrieval in Microsoft SQL Server, pp. 746–754. Springer International Publishing, Cham, 2016)Google Scholar
  27. 27.
    Tieu, K., Viola, P.: Boosting image retrieval. Int. J. Comput. Vision 56(1–2), 17–36 (2004)CrossRefGoogle Scholar
  28. 28.
    Vagač, M., Melicherčík, M.: Improving image processing performance using database user-defined functions. In: International Conference on Artificial Intelligence and Soft Computing, pp. 789–799. Springer (2015)Google Scholar
  29. 29.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001, vol. 1, pp. I–511–I–518 (2001)Google Scholar
  30. 30.
    Voloshynovskiy, S., Diephuis, M., Kostadinov, D., Farhadzadeh, F., Holotyak, T.: On accuracy, robustness, and security of bag-of-word search systems. In: IS&T/SPIE Electronic Imaging, pp. 902, 807–902, 807. International Society for Optics and Photonics (2014)Google Scholar
  31. 31.
    Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. In: Conference on Computer Vision and Pattern Recognition Workshop, 2006. CVPRW’06, pp. 13–13 (2006).  https://doi.org/10.1109/CVPRW.2006.121
  32. 32.
    Zhang, W., Yu, B., Zelinsky, G.J., Samaras, D.: Object class recognition using multiple layer boosting with heterogeneous features. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 323–330 (2005).  https://doi.org/10.1109/CVPR.2005.251

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Computational IntelligenceCzęstochowa University of TechnologyCzęstochowaPoland

Personalised recommendations